## 14<sup>th</sup> May

- 1. A circuit is constructed where a variable potential difference is applied across a light emitting diode (LED). When the PD equals the activation voltage,  $V_A$ , the LED lights up. As each electron moves through the diode, a photon is emitted, and the work done on each electron by the PD determines the photon energy  $E = hf = hc/\lambda$ .
  - a. Calculate how much **energy**, in eV and J, an electron would gain passing through a PD of  $V_A = 2.30$  V



i. eV

ii. J

Different colour LEDs of known wavelength are used in the circuit and the activation PD measured.

| Colour | λ / nm | V <sub>A</sub> / V | Planck constant<br>/ x 10 <sup>-34</sup> J s |
|--------|--------|--------------------|----------------------------------------------|
| Violet | 415    | 3.00               |                                              |
| Blue   | 465    | 2.60               |                                              |
| Green  | 550    | 2.26               |                                              |
| Yellow | 600    | 2.33               |                                              |
| Red    | 650    | 1.92               |                                              |

b. Using the equation  $eV_A = hc/\lambda$ , calculate a value for **Planck constant**, h, for each colour

- c. Ignoring the anomaly, calculate a **mean** value for h, including its **uncertainty**
- d. Using the accepted value for 'h', calculate the expected **activation PD** you would expect for the yellow LED





1. A student with mass 60 kg runs up a ramp 10 m long at 30° to the horizontal in 6.0 s. They then do 4 pull-ups, raising their body 0.50 m each time, in a total time of 10 seconds.

Calculate the **ratio** of their leg power to arm power.

2. The EMF of a battery is 6.0 V. When the battery provides a current of 1.4 A, its terminal PD drops to 4.1 V. Calculate the **internal resistance** of the battery.

3. A uniform beam of length 4.0 m and mass 48 kg hangs on two wires A and B. Wire A is 1.0 m from the centre and wire B is 1.5 m from the centre.

Calculate the **tension** in each wire.