$14^{\text {th }}$ May

1. A circuit is constructed where a variable potential difference is applied across a light emitting diode (LED). When the PD equals the activation voltage, V_{A}, the LED lights up. As each electron moves through the diode, a photon is emitted, and the work done on each electron by the PD determines the photon energy $E=h f=h c / \lambda$.
a. Calculate how much energy, in eV and J , an electron would gain passing through a PD of $V_{A}=2.30 \mathrm{~V}$

i. eV
ii. J

Different colour LEDs of known wavelength are used in the circuit and the activation PD measured.

Colour	$\lambda / n m$	V_{A} / V	Planck constant $/ \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Violet	415	3.00	
Blue	465	2.60	
Green	550	2.26	
Yellow	600	2.33	
Red	650	1.92	

b. Using the equation $\mathrm{eV}_{\mathrm{A}}=h c / \lambda$, calculate a value for Planck constant, h, for each colour
c. Ignoring the anomaly, calculate a mean value for h, including its uncertainty
d. Using the accepted value for ' h ', calculate the expected activation PD you would expect for the yellow LED

1. A student with mass 60 kg runs up a ramp 10 m long at 30° to the horizontal in 6.0 s . They then do 4 pull-ups, raising their body 0.50 m each time, in a total time of 10 seconds.

Calculate the ratio of their leg power to arm power.
2. The EMF of a battery is 6.0 V . When the battery provides a current of 1.4 A , its terminal PD drops to 4.1 V . Calculate the internal resistance of the battery.
3. A uniform beam of length 4.0 m and mass 48 kg hangs on two wires A and B. Wire A is 1.0 m from the centre and wire B is 1.5 m from the centre.

Calculate the tension in each wire.

