

Please write clearly in block capitals.										
Centre number	4	6	2	6	Candidate number	4	3	3	8	
Surname	<u> </u>	thol	NSO	Λ.						
Forename(s)	L	evi	2							
Candidate signature	l decla	are th	is is m	y own	work.					/

A-level PHYSICS

Paper 3
Section A

A Level Physics Orline. com

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet
- a protractor.

Instructions

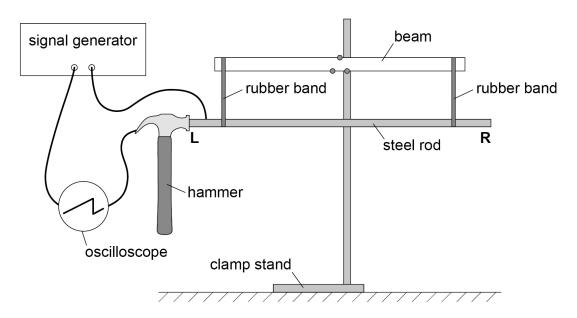
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 70 minutes on this section.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
TOTAL		

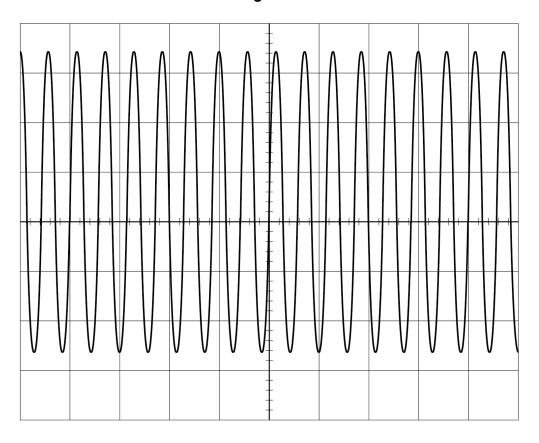

Section A

Answer all questions in this section.

0 1

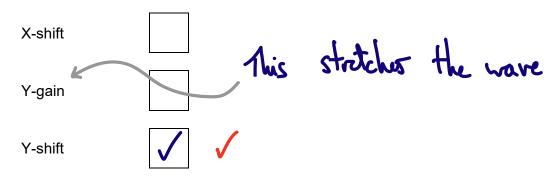
Figure 1 shows apparatus used to measure the speed of sound in a steel rod.

Figure 1


The steel rod is suspended from a beam using rubber bands.

When the hammer is in contact with the end L of the steel rod, a circuit is completed and the signal generator is connected to the oscilloscope.

Figure 2 shows the waveform then displayed on the oscilloscope.



0 1.1 Which control on the oscilloscope should be used to centre the trace vertically on the screen?

Tick (✓) one box.

[1 mark]

Question 1 continues on the next page

When the hammer hits end ${\bf L}$, a sound wave travels along the steel rod and is reflected at end ${\bf R}$.

When the wave returns to ${\bf L}$ the rod bounces away from the hammer and the circuit is broken.

Figure 3 shows the waveform produced by the brief contact between the hammer and L

Note that the waveform has now been centred vertically.

Figure 3

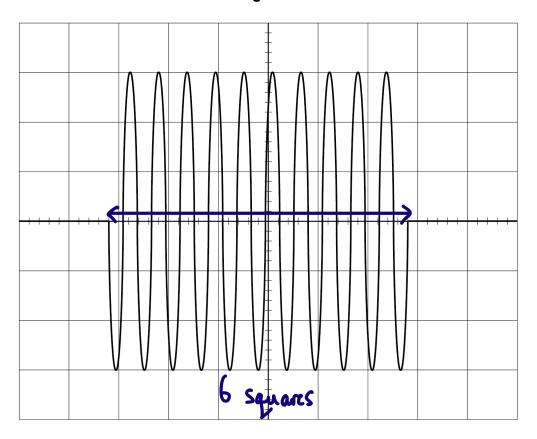
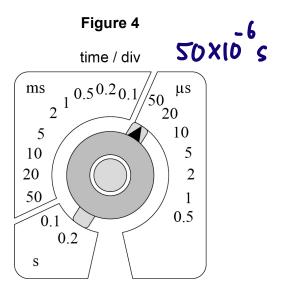



Figure 4 shows the time-base setting of the oscilloscope.

0 1 . 2 The distance between **L** and **R** in **Figure 1** is 0.870 m.

Deduce the speed of sound in the steel rod.

[3 marks]

$$V = \frac{c}{f}$$

$$S = 2 \times 0.870 = 1.740 \text{m}$$

$$t = 6.0 \times 50 \times 10^{-6} = 3.0 \times 10^{-4} \text{s}$$

$$V = \frac{1.740}{3.0 \times 10^{-4}} = 5800$$

speed of sound = 5.8 x 10 3

 ${
m m~s^{-1}}$

0 1. 3 A student repeats the experiment using a steel rod of twice the length.

Explain:

- how using the longer rod affects the waveform displayed
- any changes needed to get an accurate result for the speed.

You should include numerical detail.

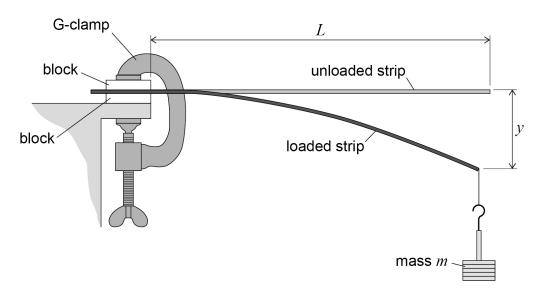
aulale one

[4 marks]

Screen (10) so it hould not

ve to be

adjusted to 0.1 ms div so the complete vareform can fit on the screen.


| |

8

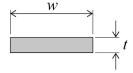
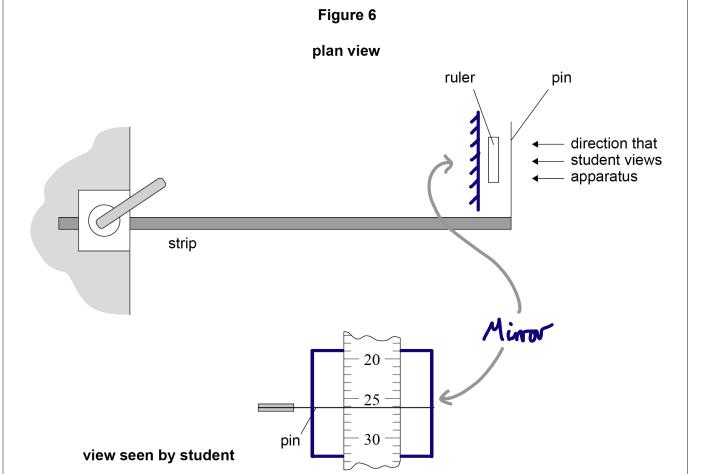

0 2

Figure 5 shows a strip of steel of rectangular cross-section clamped at one end. The strip extends horizontally over the edge of a bench.

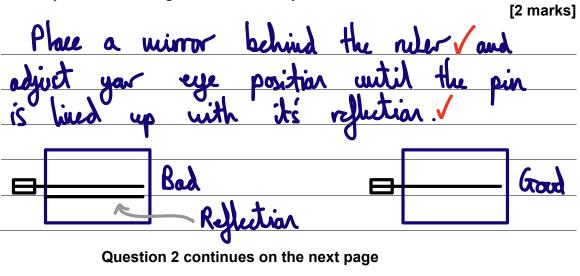
Figure 5

end view of unloaded steel strip



 $\begin{bmatrix} \mathbf{0} & \mathbf{2} \end{bmatrix}$. A mass m is suspended from the free end of the strip.

This produces a vertical displacement y.


A student intends to measure *y* with the aid of a horizontal pin fixed to the free end of the steel strip.

She positions a clamped vertical ruler behind the pin, as shown in Figure 6.

Explain a procedure to avoid parallax error when judging the reading indicated by the position of the pin on the ruler.

You may add detail to Figure 6 to illustrate your answer.

0 2 . 2 It can be shown that

$$y = \frac{4mgL^3}{Ewt^3}$$

where:

L is the distance between the free end of the **unloaded** strip and the blocks w is the width of the strip and is approximately $1~\mathrm{cm}$ t is the thickness of the strip and is approximately $1~\mathrm{mm}$ E is the Young modulus of the steel.

A student is asked to determine E using the arrangement shown in **Figure 5** with the following restrictions:

- only one steel strip of approximate length 30 cm is available
- \bullet $\it m$ must be made using a $50~\rm g$ mass hanger and up to four additional $50~\rm g$ slotted masses
- the experimental procedure must involve only one independent variable
- a graphical method must be used to get the result for *E*.

Explain what the student must do to determine E.

Can either have L or m as the independent, I choose L V.: m must be the control variable along with w and t, y is the dependent.

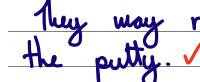
Measure L with a ruler, w with vernier callipers and t with a uniconneter.

y = \frac{4}{\text{Evt}^3}. L^3

y = m \times + C

Turn over for the next question

0 3


Conductive putty can easily be formed into different shapes to investigate the effect of shape on electrical resistance.

0 3 . 1

A student uses vernier callipers to measure the diameter \emph{d} of a uniform cylinder made of the putty.

Suggest one problem with using callipers to make this measurement.

[1 mark]

0 3. **2 Table 1** shows the calliper measurements made by a student.

Table 1

d_1 / mm	d_2 / mm	<i>d</i> ₃ / mm	<i>d</i> ₄ / mm	<i>d</i> ₅ / mm	
34.5	34.2	32.9	33.4	34.0	

Show that the percentage uncertainty in d is about 2.4%. Assume that all the data are valid.

[2 marks]

$$\vec{\lambda} = \frac{34.5 + 34.2 + 32.9 + 33.4 + 34.0}{5} = 33.8 \text{ mm}$$

$$= \frac{0.8}{33.8} \times 100 = 2.37\% \sqrt{2} 2.4\%$$

0 3 . 3 The length of the cylinder is 71 ± 2 mm.

Determine the uncertainty, in mm³, in the volume of the cylinder.

[4 marks]

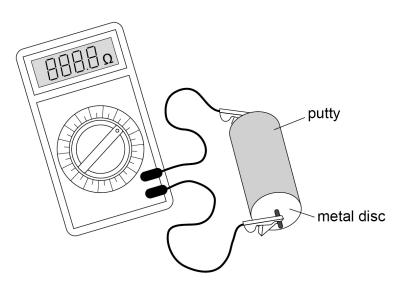
$$V = \frac{\pi d^{3} L}{4} = \frac{\pi \times 33.8^{2} \times 71 = 63706.2 \text{ mm}^{3}}{4}$$

$$\% \lambda = 2.367\%$$
 % $L = \frac{2}{71} \times 100 = 2.817\%$

Absolute =
$$\%VxV = 0.0755 \times 63706.2$$

= 4814 mm^3

uncertainty =
$$4.8 \times 10^3 \sqrt{\text{mm}^3}$$


Question 3 continues on the next page

0 3 . 4 A student is given some putty to form into cylinders.

To find the resistance of a cylinder, metal discs are placed in contact with the ends of the cylinder and connected to a resistance meter.

Figure 7 shows the apparatus.

Figure 7

The student forms the putty into cylinders of different lengths, each of volume $5.83 \times 10^{-5} \,\mathrm{m}^3$.

The length L and resistance R are measured for each cylinder.

It can be shown that $R = \frac{\rho L^2}{5.83 \times 10^{-5}}$ where ρ is the resistivity of the conductive putty.

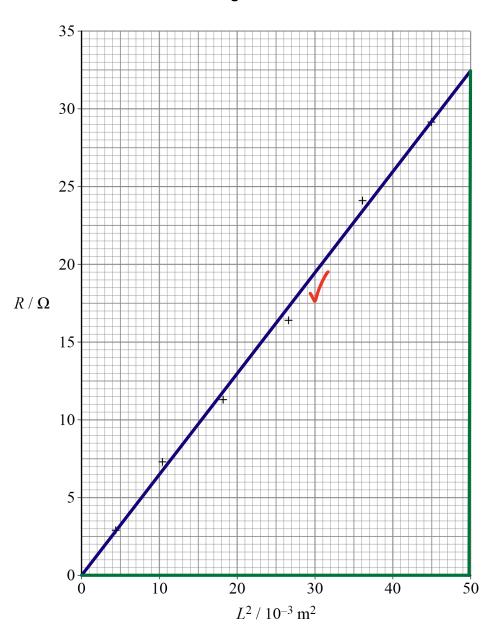
The student plots the graph shown in Figure 8.

Determine ρ .

State an appropriate SI unit for your answer.

[4 marks]

$$\frac{R}{L^2} = \text{gradient} = \frac{P}{5.83 \times 10^{-5}}$$



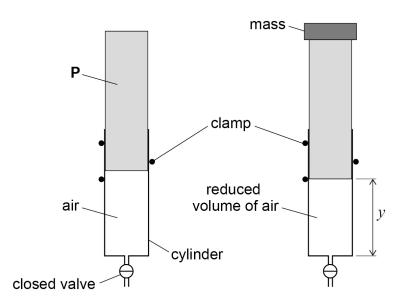
this to 25), as I collected the

Do not write outside the

11

$$\Delta y = \frac{32.5 - 0}{50 - 0} = 650 \text{ Nm}^2/$$

Turn over for the next question


0 4 Figure 9 shows air trapped in a vertical cylinder by a valve and a piston P. The valve remains closed throughout the experiment.

A mass is placed on top of **P**.

P moves downwards and the volume of the trapped air decreases.

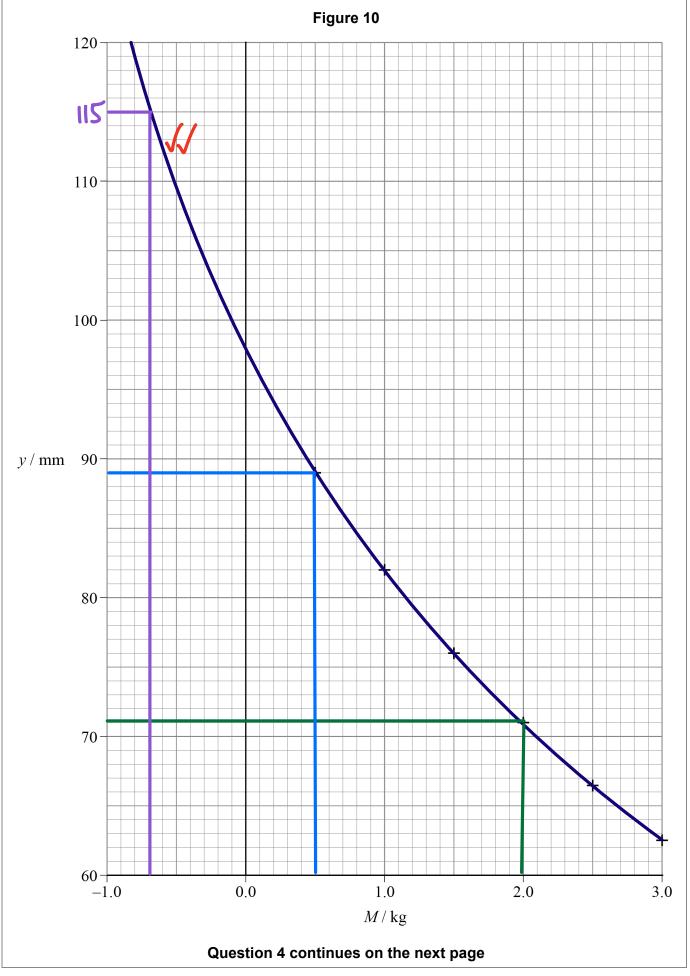
There are no air leaks and there is no friction between the cylinder and P.

Figure 9

The vertical distance y between the end of **P** and the closed end of the cylinder is

Additional masses are used to find out how y depends on the total mass M placed on top of P.

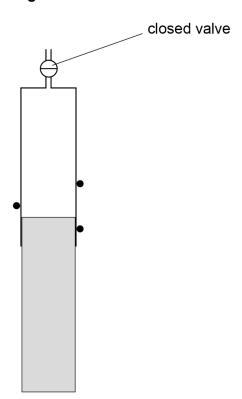
Figure 10 shows a graph of these data.


0 4 Show that y is **not** inversely proportional to M. Use data points from Figure 10.

[2 marks]

If
$$y < \frac{1}{M}$$
 $y = \frac{1}{M}$ $y = \frac{1}{M}$
From graph $81 \times 0.5 = 44.5$... $71 \times 2.0 = 142$...

Do not write outside the box



0 4. 2 The masses are removed and the cylinder is inverted.

P moves downwards without friction before coming to rest, as shown in Figure 11.

Figure 11

Explain why ${\bf P}$ does not fall out of the cylinder unless the valve is opened.

ure ver

[3 marks]

Atruspheric pressure acting on P greater
than the inside pressure .: an upwords
force acts on P that is equal to the
weight of P. If valve is opened, the
pressure inside is equal to atmospheric
pressure: resultant force on P is its

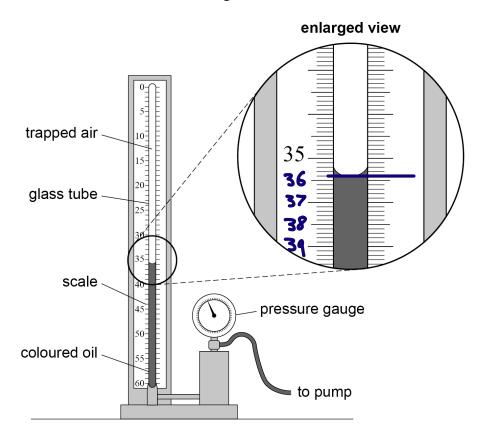
0 4 . 3 The mass of **P** is 0.350 kg.

Deduce y when the cylinder is in the inverted position shown in **Figure 11**.

Draw a line of best fit on Figure 10 to arrive at your answer.

[4 marks]

Initially M = 0.35 kg acting dannwards on the oir inside. Once removed M = -0.35.


Then inverted, force equivalent to M= 0.35 acts downwords.

$$y = 115$$
 mm

Question 4 continues on the next page

Figure 12 shows apparatus used in schools to investigate Boyle's law.

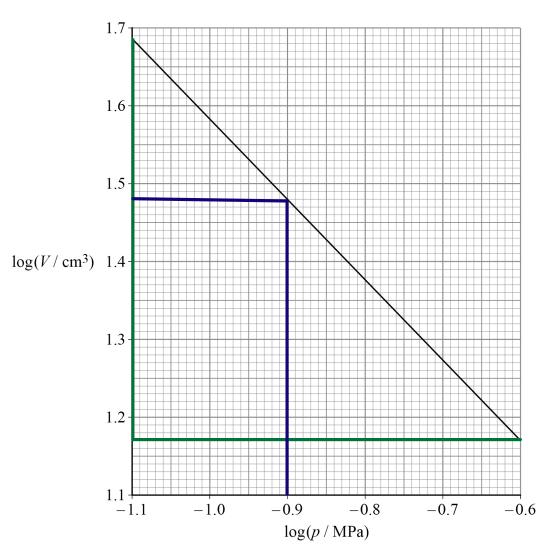
Figure 12

A fixed mass of air is trapped above some coloured oil inside a glass tube, closed at the top.

A pump applies pressure to the oil and the air.

The trapped air is compressed and its pressure p is read from the pressure gauge.

Do not write outside the 0 4 . 4 A scale, marked in 0.2 cm^3 intervals, is used to measure the volume V of the air. A student says that the reading for V shown in **Figure 12** is 35.4 cm³. State: • the error the student has made • the correct reading, in cm³, of the volume. [2 marks] volume = 35.8


Question 4 continues on the next page

Turn over ▶

 cm^3

0 4 . 5 Figure 13 shows data obtained using the apparatus in Figure 12.

Explain why the gradient of the graph in **Figure 13** confirms that the air obeys Boyle's law.

$$V = \frac{1}{\rho} \quad V = \frac{k}{\rho}$$

log V= log k - log P log V= - log P + log k ~

gradient should equal -1

$$\frac{\Delta y}{\Delta x} = \frac{1.17 - 1.685}{-0.60 - (-)1.10} = -1.03 \frac{1}{2}$$
 $\frac{1.17 - 1.685}{-0.60 - (-)1.10} = -1.03 \frac{1}{2}$
 $\frac{1.17 - 1.685}{-0.60 - (-)1.10} = -1.03 \frac{1}{2}$

[3 marks]

Do not write outside the box

0 4 . 6 The largest pressure that can be read from the pressure gauge is 3.4×10^5 Pa.

Determine, using **Figure 13**, the volume V corresponding to this pressure.

[3 marks]

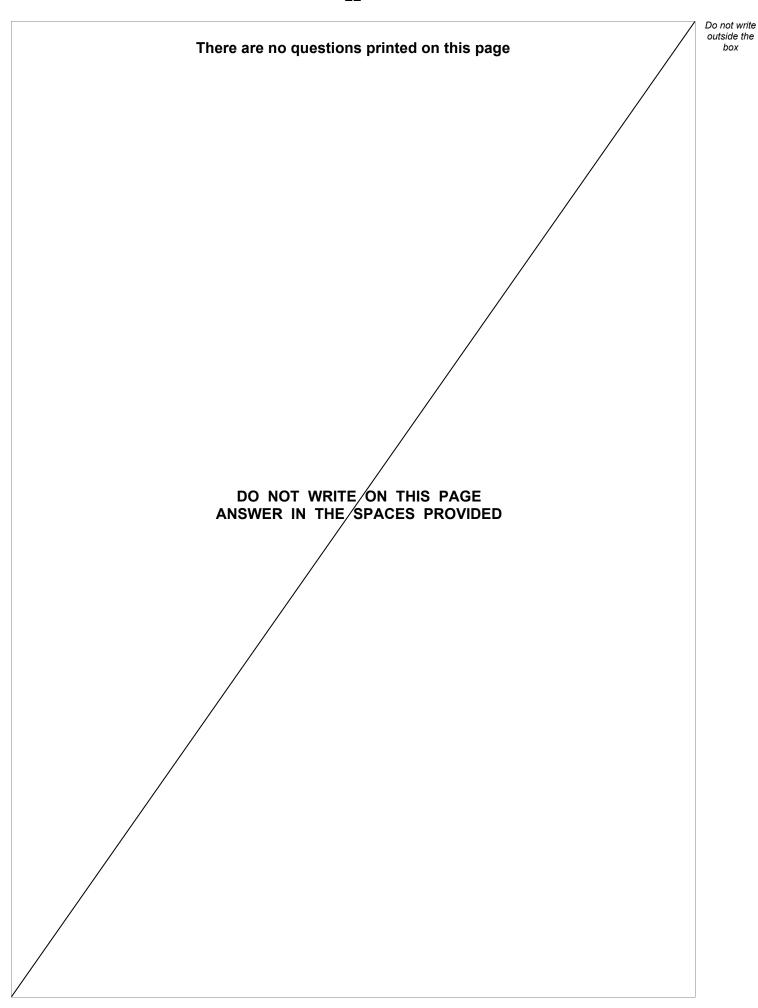
$$\log p = -0.90 \qquad \log V = 1.48 \qquad \text{was -1.03}$$

$$\log V = -\log P + \log k$$
Values from the graph

$$V = -\log f + \log k = (-1.03 \times \log 0.34) + 0.553$$

$$V = -\log f + \log k = (-1.03 \times \log 0.34) + 0.553$$

$$V = 10 \cdot 9 \checkmark$$
 cm³


0 4 . 7 State **one** property of the air that must not change during the experiment. Go on to suggest how this can be achieved.

[2 marks]

19

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 AQA and its licensors. All rights reserved.

