$26^{\text {th }}$ August

1. It is suggested that the value of X decreases with time according to the relationship:

$$
X=X_{0} e^{-B t}
$$

In an experiment to investigate this relationship, the following data was recorded:

\dagger / s	0	30	60	90	120	150
X	6.0	4.1	2.8	2.1	1.4	1.0
$\ln X$						

a. Complete the table with the natural log values for X
b. Plot the data on the graph below and draw a straight line of best fit

c. Use the value for your gradient to determine a value for the constant \mathbf{B} with appropriate units

$27^{\text {th }}$ August

1. The equation for the magnitude of force due to gravity can be written as:
(1) $F=G m M / r^{2}$

The size of the centripetal force acting on an orbiting body is:
(2) $F=m v^{2} / r$
a. Equate equations (1) and (2)
b. Rearrange the equation to make $\boldsymbol{v}^{\mathbf{2}}$ the subject
2. For a radioactive sample:

$$
A=A_{0} e^{-\lambda t}
$$

In an experiment, some data is recorded and plotted, giving a straight line of best fit.
a. Take In of both sides of the equation
b. Rewrite your equation in the form $y=m x+c$

c. Complete the table:

y-axis	gradient	x-axis	y-intercept

d. Describe how the value of the constant $\boldsymbol{\lambda}$ (the decay constant) would be calculated from the graph

