26th August

1. It is suggested that the value of X decreases with time according to the relationship:

$$X = X_0 e^{-Bt}$$

In an experiment to investigate this relationship, the following data was recorded:

t / s	0	30	60	90	120	150
Х	6.0	4.1	2.8	2.1	1.4	1.0
In X						

- a. Complete the table with the **natural log** values for X
- b. Plot the data on the graph below and draw a straight line of best fit

c. Use the value for your **gradient** to determine a value for the **constant B** with appropriate units

27th August

1. The equation for the magnitude of force due to gravity can be written as:

$$f = GmM / r^2$$

The size of the centripetal force acting on an orbiting body is:

(2)
$$F = mv^2 / r$$

- a. Equate equations (1) and (2)
- b. Rearrange the equation to make \mathbf{v}^2 the subject

2. For a radioactive sample:

$$A = A_0 e^{-\lambda t}$$

In an experiment, some data is recorded and plotted, giving a straight line of best fit.

- a. Take In of both sides of the equation
- b. **Rewrite** your equation in the form y = mx + c

y-axis	gradient	x-axis	y-intercept	

d. Describe how the value of the ${\rm constant}\,\lambda$ (the decay constant) would be calculated from the graph

