Capacitors

Have a go at the following exam questions.

OCR A, G485, Jun 10

1 (a)	Define	capacitance.
-------	--------	--------------

[1]

(b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance $4.5\,\mu F$.

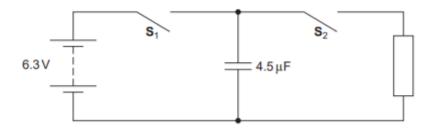


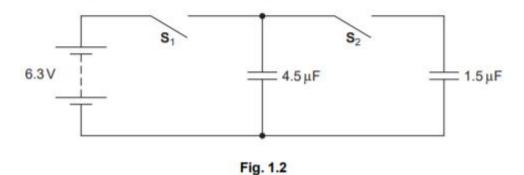
Fig. 1.1

Switch \mathbf{S}_1 is closed and switch \mathbf{S}_2 is left open. The potential difference across the capacitor is 6.3 V.

Calculate

(i) the charge stored by the capacitor

charge = μC [1]


(ii) the energy stored by the capacitor.

1	(C)	Switch	S	IS	opened	and	switch	S	is	closed	
•		CHILOIL	•		Opoliou	ullu	244 IFOUR	-		UIUUUU.	á

(i)	Describe and explain in terms of the movement of electrons how the potential difference across the capacitor changes.
	[3]
(ii)	The energy stored in the capacitor decreases to zero. State where the initial energy stored in the capacitor is dissipated.

(d) Fig.1.2 shows the 4.5 μF capacitor now connected in parallel with a capacitor of capacitance 1.5 μF. Both switches are open and both capacitors are uncharged.

Switch \mathbf{S}_1 is closed. The potential difference across the 4.5 μ F capacitor is now 6.3 V. Switch \mathbf{S}_1 is opened and then switch \mathbf{S}_2 is closed.

(i) Calculate the total capacitance of the circuit when S₂ is closed.

(ii) Calculate the final potential difference across the capacitors.

potential difference = V [2]

[Total: 11]

WJEC, Unit 5, June 10

Calculate the capacitance of the capacitor shown. [2] $C = \frac{\varepsilon_0 A}{d}$ 0.35 mm	,
The capacitor is charged so that there is a p.d. of 1.2 kV across the plates. Calculate (i) the charge stored,	[1]
(ii) the energy stored in the capacitor.	[1]
The capacitor is discharged through a 670 k Ω resistor. Calculate the time the capatakes to lose half its charge.	[3]
Explain briefly whether or not the time the capacitor takes to lose half its ener longer or shorter than your answer to (c) .	gy is
	Calculate the capacitance of the capacitor shown. [2] $C = \frac{\varepsilon_0 A}{d}$ 0.35 mm The capacitor is charged so that there is a p.d. of 1.2 kV across the plates. Calculate (i) the charge stored, (ii) the energy stored in the capacitor. The capacitor is discharged through a 670 k Ω resistor. Calculate the time the capatakes to lose half its charge.

(e)	char	lectron is located between the plates of the ged capacitor. Show that the acceleration rienced by the electron is approximately $0^{17} \mathrm{ms^{-2}}$. [3] $0.35 \mathrm{mm}$ e^- •
(f)	The (i)	electron starts from rest halfway between the plates. Use the acceleration ($6 \times 10^{17} \text{ m s}^{-2}$) to calculate the speed of the electron when i strikes the upper plate of the capacitor.
	(ii)	Show that the speed of the electron (when it strikes the upper plate of the capacitor) corresponds to a kinetic energy of 0.6 keV and explain briefly anothe method for obtaining this answer of K.E. = 0.6 keV. [3]
	(iii)	Calculate the time the electron takes to travel to the upper plate. [3

Edexcel IAL, Unit 4, Jun 2011

13 A student needs to order a capacitor for a project. He sees this picture on a web site accompanied by this information: capacitance tolerance $\pm 20\%$.

Taking the tolerance into account, calculate

a) the maximum charge a capacitor of this ty	pe can hold.
	Maximum charge =
(b) the maximum energy it can store.	(2)
	Maximum energy =
	(Total for Question 13 = 5 marks)

