

OCR B Physics – H557

Module 6: Field and Particle Physics

You should be able to demonstrate and show your understanding of:	Progress and understanding:			
	1	2	3	4
6.1: Fields (Electromagnetism)				
Magnetic/B-Field: A region surrounding a permanent magnet or				
electromagnet in which a moving charge would experience a force				
Magnetic Field Lines/Flux Lines: Lines forming continuous loops from				
magnetic north poles to magnetic south poles (They indicate the direction of the B-field)				
Solenoid: Long, current carrying coils that act as electromagnets. Through				
the middle, the B-field is uniform shown by parallel, equally spaced lines of				
flux. The longer the solenoid, the more parallel the lines of flux in through the solenoid				
Right Hand/Curl Rule: To work out the direction of field (and thus the				
location of north and south poles), curl the fingers of your right hand in the direction of the current. Your thumb then indicates the direction of the				
magnetic field lines				
Magnetic Flux Density, B (Units: T or Wbm ⁻²): Measure of the magnetic field				
strength. It is a vector quantity, as shown by the presence of direction arrows on the lines of flux				
When two magnets attract, the direction of the resultant forces can be				
deduced from the flux pattern. The lines of flux tend to shorten and				
straighten, this causes the magnets to pull together and rotate until they are head on				
Flux, φ (Units: Wb): Magnetic flux is a 'measure of magnetism', or the				
strength of a magnetic field.				
Note: 1Wb = 1Tm ²				
Flux density and flux are related by;				
$\phi = BA$				
Where B is the component of flux density perpendicular to the area				

Vou should be able to demonst	rate and show your understanding of:	Progress and understanding			
Tou should be usic to demonstrate and show your understanding on		1	2	3	4
For a B-field at an angle to the area	a concerned;				
$\phi = (Rcc)$	$(\partial s\theta)A = BA\cos\theta$				
•	B-field lines and the normal to the area,				
A. For multiple, N, rings;					
	= BANcosθ				
Flux Linkage: In a coil with N turns,	flux linkage = Nφ, where φ is the flux				
through one coil. Flux linkage conc a solenoid.	erns the field lines (flux) flowing <u>through</u>				
Electromagnetic Induction: Any cha	ange in magnetic flux in a circuit results in				
the induction of an emf across that greater emf induced	circuit. A faster flux change results in a				
Faraday's Law of Electromagnetic I	nduction: The rate of change of flux				
inkage in a circuit is proportional t	o the induced emf in that circuit				
	$\Delta\phi$				
	$\varepsilon \propto \frac{\Delta \phi}{\Delta t}$				
f we now introduce flux linkage;					
$\varepsilon \propto \frac{\Delta(N\phi)}{\varepsilon} \rightarrow \varepsilon \propto N$	$\frac{\Delta \phi}{\Delta t}$ (N is taken out as a constant)				
_ v	<u>-</u>				
Finally introduce Lenz's Law (see b					
arepsilon =	$=-\frac{d(N\phi)}{dt}$				
	uced emf is always such to act against the				
_	of (Otherwise the conservation of energy				
	I produce a current that opposes the rate				
of change of flux responsible for th	e induction				
Weber: The amount of flux that ne	eds to change per second in a circuit to				
nduce an emf of 1V	6 6 6 6				
Components Comparison:					
Electrical Circuits	Magnetic Circuits:				
Potential difference	Current turns (NI)				
Current Wire	Flux Magnetic material				
Conductivity (of the conductor)	Magnetic material Permeability (of the material)				
Length of Wire	Length of Material				
Conductance (of circuit)	Permeance (of circuit)				
	sm, it is the property of allowing the				\vdash
_	ligh permeance means that the magnetic				
circuit will give a large flux, analogo					
Permeability 11: The measure of a 1	material's ability to support the formation				_
of a magnetic circuit within itself	naterial 3 ability to support the formation				
o. a magnetic circuit within itself					

ou should be able to demonstrate and show your understanding of:	Progress and understanding			
,	1	2	3	4
Increasing Flux in a Transformer (for a given number of current turns):				
-The material used should have a high permeability				
-The material should have a small length and a large area (L is made small by				
making the circuit compact, A is made large by having two magnetic circuits in parallel				
•				
(Analogous to $G = \frac{\sigma A}{L}$ to get a large current for a given voltage, the				
conducting material must have a high conductivity, be as short as possible and have a large area)				
Air Gaps in Magnetic Circuits:				
Iron has a much greater permeability than air. In a completely closed				
magnetic circuit, little flux 'leaks' out. In a circuit with an air gap, the				
permeance of the circuit is reduced hence the flux in the circuit is drastically				
reduced. (Analogous to iron being an electrical resistor with a small				
resistance and air having a large electrical resistance)				
Eddy Currents Forming in a Transformer:				
1)Iron has a high magnetic permeance so is used as the core of the				
transformer				
2)It is also a good electrical conductor. The changing flux in the primary coil				
induces currents in the secondary coil, but also in the iron core itself. These				
are known as eddy currents (circulating swirls of current) 3)According to Lenz's Law. The flux produced by the eddy currents opposes				
the flux created by the primary coil and hence reduces the efficiency of the				
transformer				
4) The wasted energy is dissipated as heat within the core by heating caused				
by the eddy currents				
Lamination: To reduce the energy lost due to eddy currents a transformer is				
made out of a stack of flat plates called laminations. Each lamination is				
separated from the next by thin, electrically insulating layers. Laminated				
transformers typically have an efficiency of > 98%				
Alternating Flux in a Transformer:				
Faraday's Law of electromagnetic induction states that $\varepsilon \propto \text{rate}$ of change of				
flux linkage. Across the primary coil an alternating potential difference is				
connected, resulting in an alternating current in that coil. The primary coil				
generates the flux, so a constantly changing flux is produced				
Self-Inductance: The induction of an emf in the coil of the primary circuit of				
a transformer by the changing flux induced by the potential difference in				
that coil. According to Lenz's law, the self-induced emf opposes the current				
that created the changing flux that caused the induction				
Voltage in the Primary Coil: Due to self-inductance, $V_{TOT} = V_P - \epsilon = I_P R$, Since				
and the control of th				
resistance is very small in the primary circuit so IR is negligible hence $V_P = \varepsilon$, hence V_P is the rate of change of flux linkage				

You should be able to demonstrate and show your understanding of:	Progress and understandin				
	1	2	3	4	
Transformer Equation: $\frac{\Delta(N\phi)}{\Delta t} = N_P \times \frac{d\phi}{dt}$ where $N_P = No.$ of turns on primary coil. If we ignore the small loss of ϕ to the air, then ϕ is the same in the					
primary and secondary coils (like current in a series circuit). Using the self-					
inductance relationship above, $V_P = \varepsilon$, we can say $V_P = N_P \times \frac{d\phi}{dt}$ and hence;					
$\frac{d\phi}{dt} = \frac{V_P}{N_P} \ (Precursor \ to \ Transformer \ Equation)$					
Emf is induced in the secondary coil given by $V_S = -N_S \times \frac{d\phi}{dt}$. As discussed					
above, $\frac{d\phi}{dt}$ is the same for both coils hence by rearrangement;					
$rac{V_p}{V_S} = -rac{N_P}{N_S} \; (Transformer \; Equation)$					
The minus sign shows that the alternating p.d. across the secondary coil is 180 degrees out of phase with the alternating p.d. across the primary coil. If $N_P > N_S$ then the transformer is a step down and vice versa					
Currents in a Transformer: For an ideal transformer, all energy losses are ignored and all power delivered to the primary coil is transferred to the secondary coil, hence;					
$P_P = P_S \rightarrow I_P V_P = I_S V_S \rightarrow \frac{I_P}{I_S} = \frac{V_S}{V_P} = \frac{N_S}{N_P}$					
Flux and Current in a Transformer: Flux is created by current turns in a transformer, where the current loops encircle the flux. Current is created by a changing flux, where the flux loops encircle the induced current. The changing primary current I_P creates the changing flux φ , the changing flux φ induces the secondary current I_S					
Generator: Use motion (often produced by a turbine) to produce the flux changes needed to induce an emf. The output of the generator may be a.c.					
or d.c. (As opposed to a transformer which induces an emf without physical movement, a.c. current produces the necessary flux)					
Dynamo: An older term for a generator, a bar magnet rotates within a fixed coil. As the north pole passes one side of the coil, the current flows one way; then the south pole passes and the current reverses					
The induced emf when a coil is passed through a magnetic field is given by;					
$\varepsilon=vLB$ Where v is the velocity of the coil, L is the length of the coil perpendicular to the direction of travel and B is the flux density					
Faraday's Interpretation: An alternative way of describing Faraday's Law is 'induced emf equals the rate at which the lines of flux are being 'cut' by the moving coil'.					

You should be able to demonstrate and show your understanding of:	Progress and understanding			
	1	2	3	4
Rotating Coil: Generators have a coil rotating in a magnetic field (or a				
magnet rotating in a stator coil). As the coil rotates, φ through the coil				
changes from 0 (when the plane of the coil is parallel to the B-field) to a				
maximum value of ϕ = BA when the area is perpendicular to the B-field.				
If the coil is rotating at an angular velocity, ω , then θ = ω t ($\omega=\frac{\Delta\theta}{\Delta t}$) where θ				
is the angle between the normal to the plane of the coil and the B-field. This				
means that the flux through the coil is given by $N\phi = NBAcos(\omega t)$, so for				
one coil, just cancel the N on both sides.				
Emf vs Time and Nφ vs Time Graphs:				
-The negative gradient of the Nφ-t graph gives ε				
-є has its largest value when the Nф-t graph is steepest, as Nф is				
changing fastest				
-ε is zero when the Nφ-t graph is a maximum or minimum, as the				
gradient is zero at these points				
-Increasing Nφ produces a negative ε (and vice versa) due to the				
negative sign present in Faraday's Law, which is in turn due to Lenz's				
Law				
Field Around a Wire: A wire carrying a current generates its own field. The B-				
field becomes weaker further away from the wire, it does not follow a linear				
relationship.				
Wire in a Uniform Magnetic Field: If the current carrying wire is placed in a				
uniform magnetic field, the field of the wire adds to the uniform field (like a				
vector). Lines of flux tend to shorten and straighten, so a 'catapult force'				
acts on the wire				
Motor: A device that transfers energy into kinetic energy. It consists of an				
armature, a multi turn coil with an iron core (to increase the permeance of				
the magnetic circuit). Instead of a commutator to switch the direction of the				
field; an alternating B-field can be used that continually moves ahead of the				
armature, stretching the lines of flux. The shortening and straightening of				
the lines pulls the armature round in a circle				
Catapult force: Let F be the catapult force, the force felt by a wire in a				
magnetic field of strength B, is proportional to the strength of the field, the				
current through the wire (which creates a stronger field around the wire),				
and the length of the wire perpendicular to the motion of the wire. Hence;				
F = BIL				
Tesla, T: Unit of the B-field strength, defined as the force per unit current				
per unit length of conductor perpendicular to the B-field				

You should be able to demonstrate and show your understanding of:		Progress and understanding			
	1	2	3	4	
Motors as Generators:					
Every motor is a generator is every generator is a motor. If a generator is rotated, as soon as the generator is used to deliver a current to a load, a resistance is felt. This is the generator acting as a motor, it pushes against you, hence is converting energy into kinetic energy.					
Inversely, once a motor starts spinning, it generates an emf, called a back emf. By Lenz's Law, this opposes the p.d. driving the motor, hence limiting the speed of the motor. For a low angular velocity, there is little back emf generated so the armature accelerates. For a high angular velocity, there is a large back emf which balanced the applied p.d. so the armature stops accelerating and rotates with a constant angular velocity.					

