Wave Particle Duality

Have a go at the following exam questions.

OCR, G482, JANUARY 2011

6	(a)		tomic physics electron energies are often stated in <i>electronvolts</i> (eV). ine the <i>electronvolt</i> . State its value in joule.	
	(b)	An	electron is accelerated from rest through a potential difference of 300V.	
		(i)	Calculate the final kinetic energy of the electron	
			1 in eV	
			kinetic energy = eV 2 in J.	[1]
		(ii)	kinetic energy =	[1]
	(c)	(i)	Explain what is meant by the <i>de Broglie wavelength</i> of an electron.	[2]
		(ii)	Calculate the de Broglie wavelength of the electron in (b) .	
			wavelength = m	[2]

OCR, G482, JUNE 2012

5

		estion is about electrons and photons.	
(a)	thei	h electrons and photons can be considered as particles. State two differences betweet ir properties.	
(b)	An	electron is accelerated from rest through a p.d. of 5000V.	[4]
	(i)	Show that the energy gained by the electron is $8.0 \times 10^{-16} \text{J}$.	
	(ii)	Show that the speed of the electron is about $4 \times 10^7 \text{m} \text{s}^{-1}$.	[2]
(c)	(i)	Explain what is meant by the de Broglie wavelength of an electron.	[3]
	(ii)	Calculate the de Broglie wavelength of the electron in (b) .	
		wavelength =	n [3]

		wavelength = m [3]
(e)		stons of energy $9.0 \times 10^{-19} \mathrm{J}$ are incident on a clean tungsten surface causing electrons to emitted.
	(i)	State the name of this process.
		[1]
	(ii)	Calculate the maximum kinetic energy of the emitted electrons. Tungsten has a work function of $7.2 \times 10^{-19} \text{J}$.
		maximum kinatia anaray -
		maximum kinetic energy =
	(iii)	Explain why your answer to (ii) is a maximum value.
		[2]
		[Total: 19]

(d) Calculate the wavelength of a photon of energy $8.0 \times 10^{-16} \, J.$

EDEXCEL, 6PH02/01, JANUARY 2010

*16 In 1921, Albert Einstein won the Nobel Prize for his work on the photoelectric effect.

The results of experiments on the photoelectric effect show that:

- photoelectrons are not released when the incident radiation is below a certain threshold frequency;
- the kinetic energy of the photoelectrons released depends on the frequency of the incident light and not its intensity.

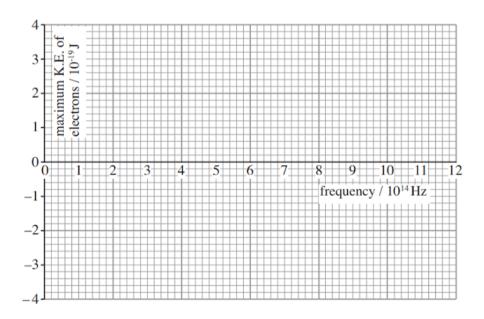
	Expl	ain how these results support a particle theory, but not a wave theory of light.
ED	EXCEL	, 6PH02/01, JUNE 2010
8		ehaviour of light can be described in terms of waves or particles. The particle of light can be demonstrated by
	\times	A light being diffracted as it passes through a narrow slit.
	\times	B the speed of light reducing when it is refracted by glass.
	\times	C light causing electrons to be emitted from a metal surface.
	\times	D light being polarised.

(Total for Ouestion 8 = 1 mark)

WJEC, 1322/01, JANUARY 2010

4.	(a)	Finetein's	photoelectric	equation may	he written
4.	(a)	Emstem s	pnotoetectric	equation may	be written

$$E_{\rm k\,max} = hf - \emptyset$$
.


(i)	What quantity of energy does hf represent?	[1]

(ii)	A student mistakenly thinks that the 'minus' sign should be a 'plus' sign. Explain, in terms of electrons and photons, why the equation must be correct as written above. [3]

(b) In an experiment in which a sodium surface is exposed to electromagnetic radiation, these results are obtained.

$f/10^{14} { m Hz}$	6.9	9.6	11.8
$E_{\rm k \ max} / \ 10^{-19} \rm J$	0.79	2.58	4.04

(i) Plot these data points on the grid, and hence draw the graph line.

[2]

(ii)	Use the data, or your graph, to determine values for
	(I) the work function of sodium, [1]
	(II) the <i>Planck constant</i> . Show your working. [2]
(iii)	Draw on the grid a line, labelled (iii), which might be obtained if a metal with a lower work function were used in the experiment. [2]

