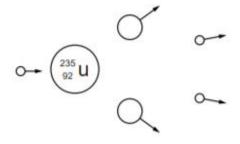
Nuclear Physics

Have a go at the following exam questions.

OCR, G485, Jan 2013


4 (a) In the core of a nuclear reactor, one of the many fission reactions of the uranium-235 nucleus is shown below.

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{140}_{54}Xe + ^{94}_{38}Sr + 2^{1}_{0}n$$

(i) State one quantity that is conserved in this fission reaction.

.....[1]

(ii) Fig. 4.1 illustrates this fission reaction.

Fig. 4.1

Label all the particles in Fig. 4.1 and extend the diagram to show how a chain reaction might develop. [2]

(b) Fusion of hydrogen nuclei is the source of energy in most stars. A typical reaction is shown below.

$$^{2}_{1}H + ^{2}_{1}H \rightarrow ^{3}_{2}He + ^{1}_{0}n$$

The ${}_{1}^{2}$ H nuclei repel each other. Fusion requires the ${}_{1}^{2}$ H nuclei to get very close and this usually occurs at very high temperatures, typically 10⁹K.

(i) Use the data below to calculate the energy released in the fusion reaction above.

mass of ${}^{2}_{1}$ H nucleus = 3.343 × 10⁻²⁷ kg mass of ${}^{3}_{2}$ He nucleus = 5.006 × 10⁻²⁷ kg mass of ${}^{1}_{0}$ n = 1.675 × 10⁻²⁷ kg

energy = J [3]

(ii) State in what form the energy in (b)(i) is released.
[1]

(iii) The 2_1 H nuclei in stars can be modelled as an ideal gas. Calculate the mean kinetic energy of the 2_1 H nuclei at 10⁹K.

	energy = J [2]
(iv)	Suggest why some fusion can occur at a temperature as low as 10 ⁷ K.
	[1]
	[Total: 10]

OCR, G485, June 2012

- 5 The radioactive nucleus of plutonium (²³⁸₉₄Pu) decays by emitting an alpha particle (⁴₂He) of kinetic energy 5.6MeV with a half-life of 88 years. The plutonium nucleus decays into an isotope of uranium.
 - (a) State the number of neutrons in the uranium isotope.
 - [1]
 - (b) The mass of an alpha particle is 6.65×10^{-27} kg.
 - (i) Show that the kinetic energy of the alpha particle is about 9×10^{-13} J.

[1]

(ii) Calculate the speed of the alpha particle.

speed = ms⁻¹ [2]

- (c) In a space probe, a source containing plutonium-238 nuclei is used to generate 62W for the onboard electronics.
 - (i) Use your answer to (b)(i) to show that the initial activity of the sample of plutonium-238 is about 7 × 10¹³ Bq.

(ii) Calculate the decay constant of the plutonium-238 nucleus.

 $1 \text{ year} = 3.16 \times 10^7 \text{ s}$

decay constant = s⁻¹ [2]

(iii) The molar mass of plutonium-238 is 0.24 kg. Calculate

1 the number of plutonium-238 nuclei in the source

2 the mass of plutonium in the source.

mass = kg [1]

[Total: 10]

WJEC Question Bank

(a)	Radon gas (²²² ₈₆ Ra) is radioactive and can be a significant health hazard in areas that have a high natural concentration of the gas. Radon decays to a stable form of lead (Pb) via 4 alpha decays and 4 beta decays and radon has a half-life of 3.8 days.		
	(i)	Calculate the mass number and atomic number of this stable isotope of lead (Pb). [2]	
	(ii)	Give three reasons why radon gas is particularly dangerous. [3]	
(b)		ulate the time taken for the number of radon gas particles to decrease to 9.0% of their	
	initia	I number. [4]	
(C)		n radon gas is kept in a lead lined container for 3.8 days, the number of radon gas cles halves. However, the activity inside the container is considerably higher than half	

the original activity. Suggest a reason why. [1]

