

Eduqas Physics - Component 1

Module 6: Vibrations

This topic covers the physical and mathematical treatment of undamped simple harmonic motion. It investigates the energy interchanges which occur during simple harmonic motion.

You should be able to demonstrate and show your understanding of:	Progress and understanding:				
	1	2	3	4	
The definition of simple harmonic motion as a statement in words					
$a=-\omega^2 x$ as a mathematical defining equation of simple harmonic motion					
The graphical representation of the variation of acceleration with displacement during simple harmonic motion					
$x = A\cos(\omega t + \varepsilon)$ as a solution to $-\omega^2 x$					
The terms frequency, period, amplitude and phase					
Period as $1/f$ or $2\pi/\omega$					
v =- $Asin(\omega t + \varepsilon)$ for the velocity during simple harmonic motion					
The graphical representation of the changes in displacement and velocity with time during simple harmonic motion					
The equation $T=2\pi\sqrt{\frac{m}{k}}$ for the period of a system having stiffness					
(force per unit extension) k and mass m The equation $T=2\pi\sqrt{\frac{l}{g}}$ for the period of a simple pendulum					
The graphical representation of the interchange between kinetic					
energy and potential energy during undamped simple harmonic					
motion, and perform simple calculations on energy changes					
Free oscillations and the effect of damping in real systems					
Practical examples of damped oscillations					

You should be able to demonstrate and show your understanding of:	Progress and understanding:				
	1	2	3	4	
The importance of critical damping in appropriate cases such as vehicle suspensions					
Forced oscillations and resonance, and to describe practical examples					
The variation of the amplitude of a forced oscillation with driving					
frequency and that increased damping broadens the resonance curve					
Circumstances when resonance is useful for example, circuit tuning,					
microwave cooking and other circumstances in which it should be avoided for example, bridge design					
SPECIFIED PRACTICAL WORK					
Measurement of g with a pendulum					
Investigation of the damping of a spring					

