Moments

Have a go at the following exam questions.

OCR, G481, June 2016

4 Fig. 4.1 shows a cyclist.

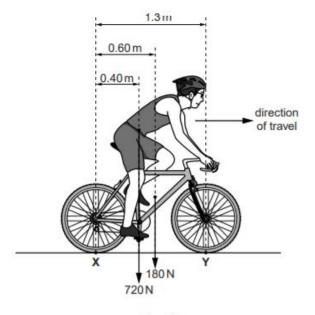


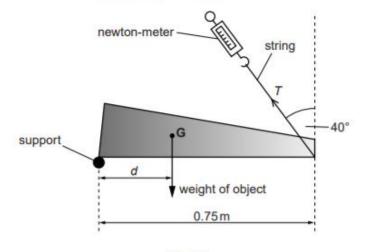
Fig. 4.1

The bicycle tyres are in contact with the road at X and Y. The cyclist is travelling at **constant** velocity on a level road. The weight of the bicycle is 180N and the weight of the cyclist is 720N.

(a)	State the magnitude of the resultant force acting on the cyclist. Explain your answer.
	[2]
(b)	Define moment of a force.
	In your answer, you should use appropriate technical terms, spelled correctly.
	[1]
(c)	Explain why the two vertical forces acting on the tyres at X and Y do not form a couple.
	[1]

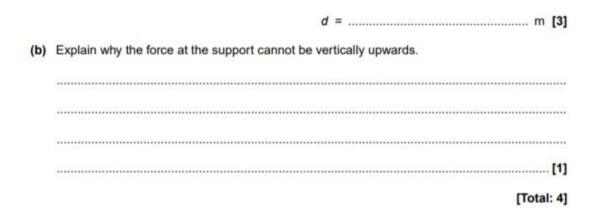
(d) Take moments about X to determine the size of the vertical force F acting on the tyre at Y.

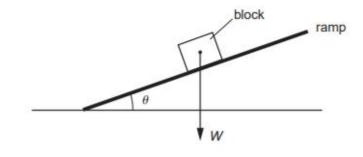
F = N [3]


(e) The cyclist leans further forward. How does this affect the force on the tyre at X? Explain your answer.

.....

OCR, G481, June 2014


2 Fig. 2.1 shows an object held horizontally by a string.


One end of the object rests on a support and the other end is held by the string. The object is in equilibrium. Point **G** is the centre of gravity of the object. The mass of the object is 1.2 kg. The tension *T* in the string is 5.1 N. The string makes an angle of 40° with the vertical.

(a) Take moments about the support and calculate the distance d.

5 (a) Fig. 5.1 shows a wooden block motionless on an inclined ramp.

The angle between the ramp and the horizontal is θ .

- (i) The weight W of the block is already shown on Fig. 5.1. Complete the diagram by showing the normal contact (reaction) force N and the frictional force F acting on the block. [2]
- (ii) Write an equation to show how F is related to W and θ.

......[1]

(b) Fig. 5.2 shows a kitchen cupboard securely mounted to a vertical wall. The cupboard rests on a support at A.

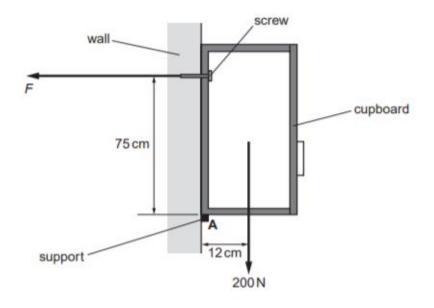


Fig. 5.2

The total weight of the cupboard and its contents is 200 N. The line of action of its weight is at a distance of 12 cm from **A**. The screw securing the cupboard to the wall is at a vertical distance of 75 cm from **A**.

physics online

(i)	State the principle of moments.
	In your answer, you should use appropriate technical terms, spelled correctly.
	[2]
(ii)	The direction of the force <i>E</i> provided by the screw on the cupboard is horizontal as shown

(ii) The direction of the force F provided by the screw on the cupboard is horizontal as shown in Fig. 5.2. Take moments about A. Determine the value of F.

F =N [2]

(iii) The cross-sectional area under the head of the screw in contact with the cupboard is $6.0 \times 10^{-5} \text{m}^2$. Calculate the pressure on the cupboard under the screw head.

pressure =Pa [2]

(iv) State and explain how your answer to (iii) would change, if at all, if the same screw was secured much closer to A.

[2] [Total: 11]

