## $7^{\text {th }}$ September

1. An investigation is carried out to examine the forces acting on objects as they move in a circular path.

A rotating turntable, show below, has small 50 g masses placed at different points. The speed of the motor is adjusted until a mass starts moving outwards and falls off the turntable.


## $7^{\text {th }}$ September

The speed of the turntable is adjusted until a 50 g mass starts sliding off. The speed is then kept constant as the time for ten complete rotations is recorded - a permanent marker was used to make a mark on the outer part of the turntable to help with counting ten rotations.

The following data was recorded:

| Starting <br> distance from <br> centre <br> $\mathrm{r} / \mathrm{m}$ | Time for ten <br> complete <br> rotations <br> $\mathrm{t}_{10} / \mathrm{s}$ | Time period <br> for one <br> rotation | Velocity of <br> mass when it <br> started sliding <br> $\mathrm{T} / \mathrm{s}$ | Velocity ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.160 | 5.81 |  | m s |  |

a. In the table above, calculate the time period for one rotation

The instantaneous linear velocity can be calculated by using the equation: $v=2 \pi r / T$
b. Calculate the velocity when each mass started sliding off the turntable
c. Finish the table with values for velocity squared
d. Plot a graph of $v^{2}$ against $r$
e. Describe the relationship between $v^{2}$ and $r$

## $7^{\text {th }}$ September



The equation for the size of the centripetal force is:
$F=m v^{2} / r$
f. Explain why the mass starts to slide off the turntable as it gets faster
g. Use the gradient of your graph to calculate the size of the maximum frictional force between the turntable and the 50 g masses

