

Examiners' Report June 2018

GCE Physics 9PH0 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

ResultsPlus

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit <u>www.edexcel.com/resultsplus</u>. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>.

June 2018 Publications Code 9PH0_02_1806_ER

All the material in this publication is copyright © Pearson Education Ltd 2018

Introduction

This was the second sitting of this examination for the new specification. The assessment structure of Advanced Paper 2 is the same as that of Paper 1, consisting of ten multiple choice questions and a number of short answer questions followed by longer, structured questions based on contexts of varying familiarity.

This specification has introduced two new question styles which were represented in this paper. Question 16 assessed the ability to structure answers logically while questions 12(a), 13(c), 15(a)(i) and 19(a)(ii) all required a deduction or judgement with justification of the conclusion, as described in Assessment Objective 3 (AO3). Students generally responded well to these, showing some ingenuity in the variety of approaches, although the conclusions were not always made sufficiently explicit and so the final mark was not always awarded.

This paper allowed students of all abilities to demonstrate their knowledge and understanding of Physics by applying them to a range of contexts with differing levels of familiarity.

Students at the lower end of the range could complete calculations involving simple substitution and limited rearrangement, including structured series of calculations, but could not always tackle calculations involving several steps or other complications, such as converting years to seconds. They also knew some significant points in explanations linked to standard situations, such as the use of the stellar parallax method for determining astronomical distances, but frequently missed important details and did not always set out their ideas in a logical sequence, sometimes just quoting as many key points as they could remember without particular reference to the context. Overall they scored much more highly on Assessment Objective 1 than on Assessment Objectives 2 and 3.

Steady improvement was demonstrated in all of these areas through the range of increasing ability and at the higher end all calculations were completed faultlessly and most points were included in ordered explanations of the situations in the questions.

Question 11 (a)

Most students made a good start to the question, equating the given expressions and arriving at $\frac{1}{2}m < c^2 > = 3/2 kT$. Many did not go on to state that *k* is constant, which was required to establish proportionality for the second mark. $\frac{1}{2}m < c^2 >$ was accepted for mean kinetic energy without comment, but students deriving an expression for $< c^2 >$ needed to establish its relationship to kinetic energy, which rarely happened.

11 (a) For an ideal gas pV = NkT and $pV = \frac{1}{3}Nm < c^2 >$.

Use these relationships to show that the mean kinetic energy of a gas molecule is proportional to the absolute temperature.

(2)Nm<c2> $m < c^2 >$ $= \frac{1}{2} m < c^2 7$ 3k $T = m < c^2 >$

The algebraic manipulation is correct and mean kinetic energy has been identified, but there is no reference to constants, so 1 mark is awarded.

11 (a) For an ideal gas pV = NkT and $pV = \frac{1}{3}Nm < c^2 >$.

Use these relationships to show that the mean kinetic energy of a gas molecule is proportional to the absolute temperature.

200

$$\frac{MT}{2} = \frac{1}{2} NM < C^{2} > 3MT = AM < C^{2} > \frac{3}{2} MT = M < C^{2} > \frac{3}{2} MT = M < C^{2} > \frac{3}{2} KT = M < C^{2} > T < 2C^{2} > \frac{3}{2} KT = M < C^{2} > T < 2C^{2} > \frac{3}{2} KT = M < C^{2} > \frac{3}{2} KT = M <$$

The correct final equation is obtained. This is restated as a proportionality expression but without stating that k is constant and losing the mean kinetic energy formula so, again, this merits one mark.

11 (a) For an ideal gas pV = NkT and $pV = \frac{1}{3}Nm < c^2 >$.

Use these relationships to show that the mean kinetic energy of a gas molecule is proportional to the absolute temperature.

(2) $MkT = \frac{1}{2}Mm < (^2)$ x 3/2 - m <(² 7 as: as ±m<(2> = Kinetic energy - ok K E

Question 11 (b)

Students generally substituted the given values, converting to absolute temperature, and calculated $< c^2 >$. A surprisingly large proportion, however, stopped there and did not take the square root. There appeared to be widespread lack of awareness of what 'root-mean-square' means.

(b) The molecules in a sample of gas have a mass of 5.0×10^{-26} kg.

Calculate the root-mean-square speed of gas molecules in the gas at 25 °C.

(3) $\frac{1}{2}MKC^{2}7=3KT$ $\frac{1}{2} \times 5.0 \times 10^{20} < C^2 7 = \frac{3}{2} (1.38 \times 10^{23}) 298)$ 3 $2c^{2}7 = \frac{3}{2}(1.38\times10^{23})298$ $\frac{1}{2}5.0\times10^{26}$ < c 7 = 246 744 ms -'

Root-mean-square speed = 24674 Lmg⁻¹

The substitution is correct and so is the calculation, as far as it goes, but the student appears to think that $\langle c^2 \rangle$ is root-mean-square speed. 2 marks are awarded.

(b) The molecules in a sample of gas have a mass of 5.0×10^{-26} kg. M

Calculate the root-mean-square speed of gas molecules in the gas at 25 °C.

(3)

$$T = 25 + 273 = 298 \text{ K}$$

$$\frac{1}{2} \text{ m}\langle c^{2} \rangle = \frac{3}{2} \text{ kT}$$

$$\Rightarrow \frac{1}{2} \times 5.0 \times 10^{26} \times \langle c^{2} \rangle = \frac{3}{2} \times 1.88 \times 10^{-23} \times 298$$

$$2.5 \times 10^{-26} \langle c^{2} \rangle = 6.1686 \times 10^{-21}$$

$$\langle c^{2} \rangle = 2.46744$$

$$C_{\text{rms}} = \sqrt{\langle c^{2} \rangle} = \sqrt{246744} = 497 \text{ ms}^{-1}$$

$$Root-mean-square speed = 497 \text{ ms}^{-1}$$

Full marks for a correct calculation and answer.

Question 12 (a)

Wien's law was used for a calculation straightforwardly by most students, but instead of using a temperature typical for the scene to determine a peak wavelength which could be compared to the stated wavelength to draw a conclusion, many used the stated wavelength to determine a peak temperature of 4140 K. This could still be used to draw a conclusion related to a stated lower temperature, but there was a lack of understanding of the inverse relationship of wavelength and temperature in Wien's law and said instead that at temperatures below 4140 K the wavelength would be shorter.

(4)

(a) Deduce whether the objects shown in the photographs would be expected to have peak emissions at infrared wavelengths. Your answer should include a calculation.

longest wavelength of visible red light \approx 700 nm 8198X10 200010 41406 No of the the temperature of the 4140k which is a lot higher that the actual value

A correct use of Wien's law, but an inappropriate conclusion showing a lack of actual understanding of the relationship between temperature and peak wavelength. This is awarded 2 marks. (a) Deduce whether the objects shown in the photographs would be expected to have peak emissions at infrared wavelengths. Your answer should include a calculation.

longest wavelength of visible red light \approx 700 nm 2 max T = 2.898 ×10-3 Wein's Low : where I max is the new peak unvelogth and T. I the tempenter max = 2.898×103 = 9.7 40 9.7 × 13 nm which is alot greater than visits injest vilible rellight so will have peak emissis at infrared wavelych

Full marks awarded for a correct calculation using an appropriate temperature and a suitable comparison in conclusion. (4)

Question 12 (b)

Most of the responses included reference to reflection, although many incorrectly introduced the idea of total internal reflection. Fewer mentioned that infrared at these wavelengths wasn't transmitted and many deduced that it was absorbed although there wasn't sufficient evidence for this conclusion as the lack of transmission could be solely due to reflection.

State what can be concluded about glass and infrared radiation.

(2)Glass totally intermally restects interared radiation, and interared radiation isn't able to Pass through the 91a55

State what can be concluded about glass and infrared radiation.

Glass	does	not	allow	infrared	radiction	to	travel
through it	- Infr	ared	redicities	n is r	effected	bu) glass.

(2)

Question 13 (a)

Students were generally able to state the relationship between the Stokes' law force and weight, although some complicated things for themselves by not following the instruction to ignore upthrust. They usually used the formula for a sphere and were able to arrive at the required expression, but there was occasional confusion between the symbols *V* and *v* and some did not recall the correct formula for the volume of a sphere.

13 Raindrops of different sizes fall with different terminal velocities through air.

The table shows the measured value of the terminal velocity for raindrops of different sizes.

Raindrop size	Drop diameter / mm	Terminal velocity / m s ⁻¹
small	0.5	2.1
medium	2.0	6.5
large	5.0	9.1

(a) <u>Derive</u>, using <u>Stokes' law</u>, the following expression for the <u>terminal velocity</u> v of a spherical raindrop in terms of its radius r.

$$v = \frac{2g\rho r^2}{9\eta}$$

where ρ is the density of rainwater and η is the viscosity of air.

You should ignore upthrust.

(2) $F = 6\pi\eta V P = \frac{\gamma n}{V} Sol$ Fzgn M=PV fi x V=6MnrV

13 Raindrops of different sizes fall with different terminal velocities through air.

Raindrop size	Drop diameter / mm	Terminal velocity / m s ⁻¹
small	0.5	2.1
medium	2.0	6.5
large	5.0	9.1

The table shows the measured value of the terminal velocity for raindrops of different sizes.

(a) Derive, using Stokes' law, the following expression for the terminal velocity v of a spherical raindrop in terms of its radius r.

$$v = \frac{2g\rho r^2}{9\eta}$$

(2)

where ρ is the density of rainwater and η is the viscosity of air.

You should ignore upthrust.

Stores Low: $F = 6\pi r \eta V$ weight = mg $6\pi r \eta v = \rho 4/3 \pi r^3 g$ = $\rho v g$ $\frac{3}{8\pi} r \eta v = \rho^4/3 \pi r^3 g$ # $r \gamma x + \pi r^3 g$ $v = 2g\rho r^2$ $q \rho$

This is an example of a fully correct response gaining 2 marks.

Question 13 (b)

V=

This was completed with little difficulty and incorrect responses were very rare. The most common errors were to use diameter instead of radius or failing to square the radius when calculating the answer.

(b) Show that the expression given in (a) produces a value of about 800 m s⁻¹ for the terminal velocity of a large raindrop.

$$\rho = 1.0 \times 10^{3} \text{ kg m}^{-3}$$

$$\eta = 1.8 \times 10^{-5} \text{ Pa s}$$

$$V = \frac{2}{9} + \frac{2}{9} + \frac{2}{9} \times \frac{1.9 \times 10^{-3} \times (5 \times 10^{-3})^{4}}{9 \times 1.9 \times 10^{-5}}$$

$$= \frac{302.8 \text{ ms}^{-1}}{9 \times 1.9 \times 10^{-5}}$$
In this response diameter has not been halved to find radius. There is an error in the calculation as well because this answer is a tenth of what these figures should produce. 1 mark awarded for using the formula with relevant quantities.
(b) Show that the expression given in (a) produces a value of about 800 m s^{-1} for the terminal velocity of a large raindrop.

$$\rho = 1.0 \times 10^{3} \text{ kg m}^{-3}$$

$$q = 1.8 \times 10^{-5} \text{ Pa s}$$
(2)

 (5×10^{-7}) 29 × 1×10³ × 215443³ = 800 ms⁻¹

1.8× 105

(2)

This student used radius and then changed it to diameter. The calculated answer should therefore have been 4 times too big, but they have written the required answer from the question. When a question starts with 'show that' and states a quantity, we require full substitution and an answer given to at least one more significant figure than the question to prove that it has actually been calculated. 1 mark

In 'show that' questions, state the answer to one more significant figure than the given quantity.

(2)

(b) Show that the expression given in (a) produces a value of about 800 m s⁻¹ for the terminal velocity of a large raindrop.

$$\rho = 1.0 \times 10^{3} \text{ kg m}^{-3}$$

$$\eta = 1.8 \times 10^{-5} \text{ Pa s}$$

$$V = 2 \times 9.81 \times 10^{3} \times (25 \times 10^{-3})^{2}$$

$$P \times 1.8 \times 10^{-5}$$

$$= 757 \text{ m s}^{-1}$$

$$\approx 800 \text{ ms}^{-1}$$

Question 13 (c)

Students demonstrated their knowledge and understanding of the conditions of Stokes' law, but could not always apply these to draw a conclusion as required by this question. Many set out the conditions in detail but did not make it clear whether they applied or not in this situation. They rarely referred to the key piece of evidence, the factor of almost 100 between their calculated value from part (b) and the measured value in table, which should have put it beyond doubt.

(c) Explain whether Stokes' law is suitable for calculating the terminal velocity of raindrops.

Stokes's law is only suitable for calculating terminal velocity when
there small molecules fobjects' being use di as " laminar flow is
political a compating the States law is suitable as ainforme
icquidera for terminal vecologi, has ocovess have is suitable for ranky ops
as they are small and have a small masses. However,
air resptance and rainfall can create turbulent flow so that win
affect the calculation for its terminal relocity.

This response incorrectly states that Stokes' law is suitable, but then goes on to give a reason, turbulent flow, why it is not suitable (0 marks).

(c) Explain whether Stokes' law is suitable for calculating the terminal velocity of raindrops. (3)

Shrues Law ion't surface because it gives	a large difference to
te neasured value given in the facely. There f	comman velocity was
9.1 ms but we ancueaked the 757 union	has a large preentage
defference - Theight huist have be some external	injuences or one-
forces acting on the raindergy that suborces ha	w nown't accounted
fer .	

(3)

A correct conclusion using the data is obtained, but there is no discussion of the physical factors. The question says 'explain' so, in addition to quoting the numerical evidence, reasons for why this is the case should be given in some detail - not just 'external forces' (1 mark).

(c) Explain whether Stokes' law is suitable for calculating the terminal velocity of raindrops.

(3)for spherical objects Stoke's law are not ectly spherical moving for spherical object - Low spred not Flow around rai ndrop is not always turbulent flow there can be not suitable So

The physical reasons are given in terms of Stokes' law. There is some misunderstanding of the situation because the calculated speed is stated as if it is the actual speed. A comparison between calculated and measured speed is required for a third mark (2 marks).

(c) Explain whether Stokes' law is suitable for calculating the terminal velocity of raindrops.

(3)calculated above (800 m/s) dif the value han table 91 m OT lamma How hope is one dop *ī*s no a esistimo its motion connot the 50 Suitable (Total for Question 13 = 7 marks)

A very good response awarded 3 marks.

Question 14

The marks here were equally divided between a calculation, using the energy to calculate momentum and then the relationship between the de Broglie wavelength and momentum, and an explanation of the interference observed. Students very often only addressed one of these and therefore did not make the connection between the calculated wavelength and the observed effect.

Of those completing a calculation, many used the quoted wavelength to calculate the energy instead.

Of those explaining interference, some did so in general terms and did not clearly link X to destructive interference and Y to constructive interference. Others got path difference and phase difference confused, saying that the phase difference was half a wavelength, for example, rather than saying that the path difference was half a wavelength.

The path difference for electrons arriving at band X from the separate slits was 2.5×10^{-11} m. For electrons arriving at band Y the path difference was 5.0×10^{-11} m.

Explain why this pattern is observed when the electron energy is 9.6×10^{-17} J.

The electrons are travelling at non-relativistic speeds.

(6) - As the electrons travel through the double stit they act as Warres so superpose and interfere If the path difference is a whole number of worreling are in phase so thus sussing constructively interfere as of maximum amplitude such as at the wavelength is 50x10 m and a areas of maxima - If the path difference is (n+2), the waves are in antiphase So they destructively interfere causing areas o ich as at X. The manihog path 2.5 x 15" m which is half a wave length

The path difference for electrons arriving at band X from the separate slits was 2.5×10^{-11} m. For electrons arriving at band Y the path difference was 5.0×10^{-11} m.

Explain why this pattern is observed when the electron energy is 9.6×10^{-17} J.

The electrons are travelling at non-relativistic speeds.

(6) Ek: 6, 2381 observed Reall rese Com work 14 6 Vr elons h) 0 Nonav S warran (((Om morin

3 marks were awarded here for the calculations, but the written part does not explain the interference effect observed. The path difference for electrons arriving at band X from the separate slits was 2.5×10^{-11} m. For electrons arriving at band Y the path difference was 5.0×10^{-11} m.

Explain why this pattern is observed when the electron energy is 9.6×10^{-17} J.

The electrons are travelling at non-relativistic speeds.

6×10 2 × 9.6410 K 31 a Ξ $\times 10$ Sne 9 45×10 50 100 4 01 0 Si æ en ban ρ So ne aort 10 Total for Question 14 = 6 marks) nee eat CAN they und the Supl in M 7 10 Ľ hig

The full 6 marks have been awarded to this response which includes a full, correct calculation and the required explanation of the interference effect.

Question 15 (a) (i)

Students adopted different approaches to this question. The most straightforward was to calculate the period and compare it to 12 hours. An alternative approach was to use the period to calculate the orbital height, although here some forgot to subtract the radius of the planet. The other methods involved calculating the same quantity from two different starting points – the stated period and the orbital height – to arrive at comparable quantities. Students doing this often failed to make an explicit final comparison to make their conclusion clear and were not awarded the final mark.

In their calculations, students were generally able to apply Newton's universal law of gravitation correctly, but could not always proceed successfully from there. Using the correct value of separation by adding the orbital height and planetary radius was a source of difficulty for a number of students.

15 In 2015 the Messenger spacecraft crashed into the surface of the planet Mercury after four years in orbit observing the surface of Mercury.

Messenger's orbit was highly elliptical, varying between 200 km and 15 000 km above the surface of Mercury. Messenger completed one full orbit every 12 hours.

mass of Messenger spacecraft = 565 kg mass of planet Mercury = 3.30×10^{23} kg radius of planet Mercury = 2430 km

(a) It has been suggested that the same orbital period of about 12 hours could have been achieved if Messenger was in a circular orbit 7690 km above the surface of Mercury.

T × (211

(i) Determine whether this suggestion is correct.

x 3.3 × 10 285595 hours. 7.93 Suggestion is incorrect.

In this response the relevant formulae have been combined before substitution. An incorrect value for *r* has been used, ignoring the planetary radius, so the 'use of' marks have been awarded, but not the mark for the final answer. There is a correct conclusion based on the value obtained, but it has not been compared directly with 12 hours, so the final mark is not awarded, giving a total mark of 2.

When you are asked to 'determine whether' certain conditions are met, you must make a clear statement, including any values being compared. 15 In 2015 the Messenger spacecraft crashed into the surface of the planet Mercury after four years in orbit observing the surface of Mercury.

Messenger's orbit was highly elliptical, varying between 200 km and 15 000 km above the surface of Mercury. Messenger completed one full orbit every 12 hours.

mass of Messenger spacecraft = 565 kgmass of planet Mercury = 3.30×10^{23} kg radius of planet Mercury = 2430 km (a) It has been suggested that the same orbital period of about 12 hours could have been achieved if Messenger was in a circular orbit 7690 km above the surface of Mercury. 2430+7% (i) Determine whether this suggestion is correct. : this 12.0 = 12.0suggest is correct.

4 marks out of 4 awarded for the correct calculation of the answer and a correct conclusion including a direct comparison of the values.

Question 15 (a) (ii)

Students displayed some understanding of relevant advantages, but did not always express this with sufficient clarity to be awarded two marks. 'Better pictures' would not be sufficient.

(ii) The elliptical orbit chosen had advantages over this circular orbit.

Explain one advantage.

(2) Gets closer to the planet at Certain points so observations are

(ii) The elliptical orbit chosen had advantages over this circular orbit.

Explain one advantage.

4	cortel	60~~6	ald	claser	70 -		Mer	~y	at quir	tiniz	<u></u>
~~~	prot	<i>es</i> 1	tt!	rook	nold	be	dot	~~~	deboyled		

(2)



### Question 15 (b)

This was poorly answered except at the higher levels of achievement for the paper. The great majority of students seemed entirely unfamiliar with the concept of gravitational potential, something that was not in the previous specification. Many did not even appreciate the change in gravitational field strength as the distance from the planet increased and simply used Newton's universal law of gravitation to calculate a single value of acceleration due to free fall and applied this using equations of motion.

Of those using gravitational potential, some had difficulty in applying the correct distances or used a single distance and did not calculate a change.

(b) Calculate the velocity an object would have as it reached the surface of Mercury if it was released from Messenger's maximum orbital height. Assume the object is released from rest and that Mercury has no atmosphere.

15000×103 = h 3. 3x1023

Velocity = 3426ms-1

(4)



(b) Calculate the velocity an object would have as it reached the surface of Mercury if it was released from Messenger's maximum orbital height.

Assume the object is released from rest and that Mercury has no atmosphere.

Gravitational potential difference = 
$$-GM(\frac{1}{r_{z}} - \frac{1}{r_{t}})$$
 (4)  
=  $-GM(\frac{1}{2430000} - \frac{1}{2430000}) = -7.8 \times 10^{6} T_{hy}$   
change in gravitation potential array =  $955 \text{ lay} \times -7.8 \times 10^{6} = -4.4 \times 10^{9} \text{ J}$   
= increase in binder many =  $mV^{2}$   
 $V = \sqrt{\frac{2}{2} \times \frac{4.4 \times 10^{9}}{5}}$   
= 39.08 × 6  
= 39.00 N/s

Velocity = 3900 m/s



The full 4 marks have been awarded for this answer where the difference in gravitational potential has been correctly calculated and used to arrive at the required answer.

### Question 16 (a)

Many students did not see this as an example of resonance and expressed their answers in terms of damping. They all, at least, appreciated that a transfer of energy was taking place and, as long as they were careful to identify and address the three main phases of the behaviour described, were rewarded for describing the process of transfer from B to A. For those describing resonance, a statement linking equal lengths to equal natural frequencies was often missing as was the idea that all of A's energy had been transferred to B at one stage. Similarly, the difference in length in the last part was not always directly linked to a difference in natural frequencies.

16 The diagram shows two identical pendulums, A and B, side by side with a rubber band placed over both strings.



Pendulum A is displaced and starts to oscillate. As pendulum A oscillates, pendulum B starts to oscillate with the same time period, its amplitude increasing as the amplitude of pendulum A decreases. At one stage pendulum A is no longer oscillating and pendulum B has its maximum amplitude. Then pendulum A starts to oscillate again with increasing amplitude, as the amplitude of pendulum B decreases.

The apparatus is adjusted so that the pendulums do not have the same length as each other. When the first pendulum is set into oscillation, the second pendulum starts to oscillate, but with very small amplitude; the first pendulum does not stop oscillating.

*(a) Explain this behaviour.

(6) Initially pendeturn it's oscillations pull the rubber band at the same frequency as pendulum B's natural Frequency. The pull of the rubber band acts as a driving Force with driving frequency the same as natural frequency of pendulum B. Pendulum B undergres The some frequencies cause resonance of pendulum ascillations. B, thus the ingreasing amplitude. band causes pendulum A to undergo c Oscillation, removing energy from the and reducing its applitude



Indicative marking points 2 and 3 have been included in the first paragraph, allowing 2 marks. This is insufficient indicative content for the award of marks for linkage, so the total mark is 2. 16 The diagram shows two identical pendulums, A and B, side by side with a rubber band placed over both strings.



Pendulum A is displaced and starts to oscillate. As pendulum A oscillates, pendulum B starts to oscillate with the same time period, its amplitude increasing as the amplitude of pendulum A decreases. At one stage pendulum A is no longer oscillating and pendulum B has its maximum amplitude. Then pendulum A starts to oscillate again with increasing amplitude, as the amplitude of pendulum B decreases.

The apparatus is adjusted so that the pendulums do not have the same length as each other. When the first pendulum is set into oscillation, the second pendulum starts to oscillate, but with very small amplitude; the first pendulum does not stop oscillating.

*(a) Explain this behaviour. (6) This is a example of resonance. Ponotstan taken Pondulum A begins to oscillate at its natural prequency, which, because they have the same length, is also the notoral prequency of pendulum B. Pendulum B i therefore fored to oscillate at its natural frequency so there is resonance where B has an increasing amplitude and there is a maximum onergy transfer from A to B. Rendulum A stops ostillating when all of its charge have been transceries to B. A. brains to escillate again when B pres it to oscillate at its natural prequency is resonance and movimum. enoryy tensor occure when they have different lengths. they have different nothird prequencies so A penalulum A still proces B into oscillation but it does not oscillate at it notical prequency no resonance does not accur. No maximum anplitude or maximum anongy transfer no A does not transfer all margy



All 6 of the indicative marking points have been included, allowing 4 marks for the indicative content. As required for maximum linkage marks, the answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout, so the total mark is 6.

### Question 16 (b) (i)

This mark was very rarely awarded. Most students could identify the phase difference as  $\pi/2$  but they just did not make any mention of which was ahead of which in the cycle.

(b) The graph shows how the displacement of each pendulum varies with time at one stage in the motion.



(i) State the phase relationship between the two pendulums.

90° - difference of physe - out of physe

(1)



A phase difference of 90 degrees has been correctly identified, but no information about which pendulum leads to fully describe the phase relationship, so no marks were awarded. (b) The graph shows how the displacement of each pendulum varies with time at one stage in the motion.



(i) State the phase relationship between the two pendulums.

(1)





No mark awarded. The phase difference of  $\pi/2$  is correct, but this response states that B leads. On the graph A is at maximum displacement at time 0s but B is not at maximum displacement until a later time, so A leads B. A graph of this shape for two waves with distance as the horizontal axis would show B ahead of A, but not this graph.



When considering phase differences, look carefully to check whether the horizontal axis shows time or distance. (b) The graph shows how the displacement of each pendulum varies with time at one stage in the motion.



### Question 16 (b) (ii)

Most students applied the relevant formula to arrive at the correct answer, but a number misread the graph and used an incorrect value of time. Some students, in obtaining the time period of pendulum B, read 1.0 on the graph and counted 4 small squares to give a time of 1.4 s instead of 1.2 s because they did not look beyond the 1.0 to correctly establish the scale.



(ii) Determine the length of pendulums A and B.



Length = 4.287m



1 mark has been awarded for using the correct time from the graph, but there is no mark for substitution because the numerical value for *g* has not been written down.



'Use of' marks cannot be awarded if physical constants are left as letters - they must be written down as the correct numerical value.

### Question 17 (a)

This was the first scale ray diagram in the examination of Advanced level on this specification and it was not answered well by the majority. The question made clear that the screen shown was the object in this diagram, and that seemed to have been understood, but the basic use of two correct construction rays extrapolated to a virtual image was not seen in over a half of responses. Students completing the ray diagram were usually within the accuracy limits and could often calculate magnification, but a clear conclusion related to the conditions set out was not often made by those who had completed everything else correctly in this AO3 question.

For a particular user of the headset, the image of the screen must be at least 16 cm from the eye and have a magnification of at least 3.0.

Determine whether this would be possible with a lens of focal length 3.8 cm. Your answer should include a full-scale ray diagram drawn on the grid provided.





This response shows a correct ray diagram, with an image within the required range. The magnification is also within the range. The conclusion is correct, but there is not a clear comparison to the required distance to the eye, so only the first 3 marks are awarded.

For a particular user of the headset, the image of the screen must be at least 16 cm from the eye and have a magnification of at lease 3.0. Determine whether this would be possible with a lens of focal length 3.8 cm. Your answer should include a full-scale ray diagram drawn on the grid provided. (4) distance from screen to lens = 2.8 cmdistance from lens to eye = 2.2 cm distance: 11.6cm +52.2cm = 13.8cm  $\frac{1}{1}$  +  $\frac{1}{1}$  =  $\frac{1}{1}$ Muguification is 4 (heme >3) however distance is 13.8m which is 1011 than 16 cm. NA possible  $M = \frac{V}{u} = \frac{8}{2} = 4$ screen lens 0.24



The full 4 marks are awarded for a correct diagram, correct calculations and a clear comparison.

### Question 17 (b)

Nearly half the students applied Snell's law to correctly calculate the angle of refraction, but most could not go on to calculate the angle of deviation, most of them not realising the difference and apparently thinking they were the same thing as they wrote 44° on the answer line.

A failure to appreciate the idea of deviation in part (i) meant that most candidates were hindered in their approach to part (ii), so marks were infrequently awarded. Credit was most often given for the idea of all of the rays passing through the principal focus, but some students missed out by not identifying this point.

(b) Plastic Fresnel lenses are used in the VR headset because they are thinner and lighter than traditional glass lenses.

Instead of the continuous curved surface of a converging lens the Fresnel lens has circular ridges, each with an edge at a different angle to the adjacent ridge, as shown in the simplified cross-section in Figure 1. Figure 2 shows a ray of light entering a section of the lens.



Figure 1

Figure 2

(i) Calculate the angle through which the ray has been deviated as it emerges from the plastic.

refractive index of plastic = 1.47

$n$ , sine, = $n_2$ sine	2
1.7 47 × Sin 28 =	= Sin Oz
0-86 69	= SinB
43.6°	~ 0
	12 -6

Angle =  $-43.6^{\circ}$ 

(4)

(ii) Explain how the lens focuses a beam of light travelling parallel to the principal axis.

The cons a	auses r	efraction	due te	, the	Cha	me in	Optical
density betw	een the	lone	and	tho	dir.	4 6 4 6 4 6 4 6 4 7 8 7 6 1 6 7 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
The beam	১ এক	leg-ruded	towar	k t	6 PN	cipal a	عنه
(4)3 the (1	ense 3	cinviel	eall	faut	bea	n of	light
win act	Afriter	<b>c</b> t	a diffe	ret	Unite Engle	, adju	sted So
that au	beams	are	les vacted	20	te	PEAL,	Principal
focus							



(i) 2 marks awarded for correctly calculating the angle of refraction of the ray, but deviation has not been considered.

(ii) While not considering the variation in the angles of incidence and deviation, this response is awarded 1 mark for the comment about the 'beams' being refracted to the principal focus. (3)

(b) Plastic Fresnel lenses are used in the VR headset because they are thinner and lighter than traditional glass lenses.

Instead of the continuous curved surface of a converging lens the Fresnel lens has circular ridges, each with an edge at a different angle to the adjacent ridge, as shown in the simplified cross-section in Figure 1. Figure 2 shows a ray of light entering a section of the lens.



Figure 1

Figure 2

(i) Calculate the angle through which the ray has been deviated as it emerges from the plastic.

refractive index of plastic = 1.47

90-62 = 28° n,Shi = nz Sinr 1.475in78 = Sinr Sin" (1.475in28)=1= 43.6 3986 96/4 90-67 = 78 43.6-28= 15.6

Angle = 456 15.6

(4)

(ii) Explain how the lens focuses a beam of light travelling parallel to the principal axis.

Beam of light enters the leas of the plan edge. The beam travers through. Light Closest to the centre is reprocted less or the engle by incidence is smaller but as you travel outwards the position of the normei Means that angle of Encidence for the same parteles beam gets larger and larger, Cherejore light is reprected jurther and jurther prom the Darrales the jurther from the centre of the beam you go, Creating a joace (Total for Question 17 = 11 marks) Svirtual image of the object



(i) 4 marks for calculating the angle of refraction and using it to calculate the deviation of the ray.

(ii) The first two marking points are awarded for the comments about the changing angles of incidence and their effect on the amount of refraction (2 marks). (3)

#### Question 18 (a)

A majority of students completed both parts successfully. Those who failed to convert years to seconds in part (i) could still obtain 5 marks out of 6 and commonly did so.

18 Phosphogypsum is a by-product in the manufacture of fertiliser. It is slightly radioactive because of the presence of radium-226, a radioisotope with a half-life of 1600 years.

It must be stored securely as long as the activity of the radium-226 it contains is greater than 0.4 Bq per gram of phosphogypsum.

(a) (i) In a sample of 1.0 g of phosphogypsum, the activity of radium-226 is 1.3 Bq.

Calculate the number of nuclei of radium-226 in this sample. (3)A=ZN Acat 1.3 = N1600 N= 3000.8 Number of nuclei = 3001(ii) Calculate the time in years it would take before this sample reached the permitted level of decay rate. (3) A=foe en2 Ł (600 -en2tln = 0720.7 Levrs E= 1600 Time =  $\partial F 2 1$  years



18 Phosphogypsum is a by-product in the manufacture of fertiliser. It is slightly radioactive because of the presence of radium-226, a radioisotope with a half-life of 1600 years.

It must be stored securely as long as the activity of the radium-226 it contains is greater than 0.4 Bq per gram of phosphogypsum.

(a) (i) In a sample of 1.0 g of phosphogypsum, the activity of radium-226 is 1.3 Bq.

Calculate the number of nuclei of radium-226 in this sample.

K = ln 2	$A = X \mathcal{N}(\cdot)^{(3)}$
<del>(</del> ),	$\Lambda (= A)$
$= \frac{102}{16000 \times 365 \times 24 \times 60 \times 60}$ $h = \frac{1.37 \times (0^{-11})}{1000}$	= 1-3 1-37×10-11
~~	$N = 9 - 46 \times 10^{10}$
	Number of nuclei = $9.46 \times 10^{10}$
<ul> <li>(ii) Calculate the time in years it would take be level of decay rate.</li> </ul>	efore this sample reached the permitted
A = Aze-At.	(3)
1.3 = 0.4 e	·
$ n \cdot 3 =  n  \cdot 3 - 1 \cdot 3 + x \cdot 1 + x \cdot 1 \cdot 3 + x \cdot 1 + x \cdot 1$	с., <del>С</del> .
1.37×10-"	
$t = 8.6 \times 10^{10} \le .$	
JESX 14x 60×60	
E = 2227 yours.	Time = $2723$ years



Both parts are fully correct and are awarded 3 out of 3 each.

#### Question 18 (b)

A large majority completed this part successfully for full marks. Some made errors in calculating the mass difference or omitted one of the steps in the calculation, obtaining 3 or 4 marks, but scores lower than this were rare.

(b) Radium-226 decays to radon-222 by alpha emission.

Determine the energy released in MeV in the decay of a single nucleus of radium-226.

mass of radium-226 nucleus = 225.97713 u mass of radon-222 nucleus = 221.97040 u mass of  $\alpha$  particle = 4.00151 u

225-97713 = 221-97240 + 4=0 0/51 + 2  $225 \cdot 97713 - 225 - 97191 = x$  $x = 5.2 \times 10^{-3} U$ 

MeV= 1-6×10-13 J

5.2×10-3× 1.66×10-27 = 8.632×10-30



Energy released =  $5.4 \times 10^{-12}$ MeV



3 marks awarded. The student has qualified for marking points 1, 2 and 4 but has omitted the energy-mass conversion using  $\Delta E = c^2 \Delta m$ .

(5)

R226 -> (202+044

(b) Radium-226 decays to radon-222 by alpha emission.

Determine the energy released in MeV in the decay of a single nucleus of radium-226.

(5) mass of radium-226 nucleus = 225.97713 u mass of radon-222 nucleus = 221.97040 u mass of  $\alpha$  particle = 4.00151 u 77134 (221.47040+4.00151)u 225 q 5.22×153 U  $5.22 \times 10^{-7} \times 1.66 \times 10^{-27} = 8.$ 6652×10 AE=1MC2 310+8 7186Px 10 8.66524 15-x10 eV -87 Energy released = 4.87MeV



#### Question 19 (a)

The great majority were able to correctly calculate the luminosity of Proxima Centauri, although some did not compare it to the luminosity of the Sun. Most of these used luminosity to calculate the surface temperature, obtaining 5 marks out of 6. Many of these did not go on to score the final mark because there was not a clear and correct conclusion as required for AO3. In a number of cases this was because they did not take into account the decreasing temperature on the horizontal axis and marked the axis to the right of 3000 K. Some others had some difficulty with the logarithmic scale for luminosity.

- 19 In 2016 the Breakthrough Starshot initiative was announced. This project intends to send a fleet of small probes to Proxima Centauri, the nearest star to the Sun. This journey would take about twenty years.
  - (a) The radiation intensity at Earth from Proxima Centauri is  $3.25 \times 10^{-11}$  W m⁻². The luminosity of the Sun is  $L_{\odot}$ .
    - (i) Show that the luminosity of Proxima Centauri is about 0.002  $L_{\odot}$ .

(3)

distance to Proxima Centauri =  $4.00 \times 10^{16}$  m  $L_{\odot} = 3.85 \times 10^{26} \,\mathrm{W}$  $3.25 \times 10^{11} = \frac{L}{471 \times (4 \times 10^{16})^2}$ I = L= (3.25×10") × 4TT× ((4×10")2) L= 6.535 × 1023 W 0.00 0.002 (3.15/20026)

#### (ii) Proxima Centauri is described on a website as a main sequence star.

Determine whether the surface temperature of Proxima Centauri is consistent with a position on the main sequence of the Hertzsprung-Russell diagram.

(3)

radius of Proxima Centauri =  $9.81 \times 10^7$  m





(i) 2 marks - The luminosity has been calculated correctly, but the fraction of the Sun's luminosity has not. The student has calculated 0.002 of the luminosity of the Sun, but then crossed it out.

(ii) 2 marks - The calculation of surface temperature is correct, but the comparison point of the graph is indicated by a circle that is too large and centred on the wrong point.

- 19 In 2016 the Breakthrough Starshot initiative was announced. This project intends to send a fleet of small probes to Proxima Centauri, the nearest star to the Sun. This journey would take about twenty years.
  - (a) The radiation intensity at Earth from Proxima Centauri is  $3.25 \times 10^{-11}$  W m⁻². The luminosity of the Sun is  $L_{\odot}$ .
    - (i) Show that the luminosity of Proxima Centauri is about 0.002  $L_{\odot}$ .

distance to Proxima Centauri = 
$$4.00 \times 10^{16}$$
 m  
 $L_{\odot} = 3.85 \times 10^{26}$  W



(3)

(ii) Proxima Centauri is described on a website as a main sequence star.

Determine whether the surface temperature of Proxima Centauri is consistent with a position on the main sequence of the Hertzsprung-Russell diagram.





#### Question 19 (b)

This is not a new topic on the specification, although it is likely to have been studied in year 12 as it is in the AS section, so the overall poor response was somewhat surprising. It might have been because the question was about an absorption spectrum rather than an emission spectrum, which occurs more frequently in past papers, although the specification just refers to line spectra. A number of students did not appear to recognise line spectra as the subject of the question and instead focused on the Doppler Effect.

The required points in the mark scheme are the standard points used for many years, but insufficient detail was given by the majority of students so that many scored no marks at all. Discrete energy levels were often not mentioned and neither were photons, which were required for 3 of the marks.

(b) The composition of a star can be determined by analysis of its absorption spectrum.

Explain why there are certain specific frequencies missing from the spectrum.

A photon is	absorbed	When	The differ	ence
in the energy	Rung 13	equal p	te an	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
of the	photon.	A pru	von is	J
absorned	by a	n erect	on ,	
the electr	un n	noves	bo é	641-1-1-104040-1-1-104040-1
hipper on	ingy 1	lerel.	There	on
certrin f	requeries	missing	~ <u>5</u>	earry
philm abier	hed at	any	certain.	
frequencies	when	Nen	15	٩
Car thin	different			



183



Learn standard descriptions of physical processes, such as the production of atomic line spectra, and be able apply them with sufficient detail to specific situations, such as absorption spectra in this case.

(5)

(b) The composition of a star can be determined by analysis of its absorption spectrum.

Explain why there are certain specific frequencies missing from the spectrum.

Electron at orbit atomic muli at discrete energy levels. If an electron absorbs a photon with energy that is equal to the energy difference between two energy levels, the electron is excited to a higher energy level. When the dectron moves back down to a more stable orbit, the energy is emitted in all direction, so the observed intervity is reglighte. Only photons with the exact energy needed to excite an electron are absorbed and since E=hf, only certain proquencies appear to be missing ' from the spectrum. Since different elements have differences between energy levels, differences photon prequencies are absorbed by different elements, meaning analypin of a star star's absorbtion spectrum means its composition can be determined.



This is an excellent response and gains 5 marks out of 5.

#### Question 19 (c)

In contrast to part (b), this part was answered well, with over half of the students being awarded at least 2 marks. The most common missing element in the answer was a reference to background stars. Many students gained at least 2 marks for their use of a diagram, which is relevant for this topic.

A few students described incorrect methods for nearby stars, such as the use of standard candles.

(c) Describe how the distance to nearby stars like Proxima Centauri is determined.

(3)Jotom  $\dot{\alpha}$ 



Despite the question stating that Proxima Centauri is the nearest star to the Sun, this answer explicitly refers to stars that are too far away for parallax to be used and suggests standard candles (0 marks).



Be sure to learn the relevant parts of the 'Cosmic distance ladder', the distances at which they apply and the reasons.

(c) Describe how the distance to nearby stars like Proxima Centauri is determined.

· Take the parallex angle Some and H Oa ber a site Centaun' carllel of I an t ten he con use tan O 6 ~ heart star as the perate the angle is how as the 4, ----an

(3)



(c) Describe how the distance to nearby stars like Proxima Centauri is determined.

	Move distant	(3)
	stan 1 Aan 0= Au	
Jan E	1 d	
I JAW)	The change in	. angle between
St. d. o.	the nearby	tax and nove
Jan, )0,	distant stars	is measured
	6 months of	Trigonometay
	is then used to	calculate the
distance from the masto the nearby star, us and the sun.	ing the known distance betw	en the earth



3 marks out of 3 were awarded for a very clear answer.

#### **Paper Summary**

Based on their performance on this paper, students are offered the following advice:

- There are no extra marks for completing multiple choice questions 'in your head', so students should be ready to write them out on the paper.
- Be sure you know the command words and understand the level of required response for each of them, e.g. explain would mean a student must say why something happens and not just describe what happens. There will always be at least two linked marking points for a question asking you to 'explain'.
- Where you are asked to make a judgement or come to a conclusion by command words such as 'determine whether', 'explain whether' or 'deduce whether', you must make a clear statement, including any values being compared.
- Check that quantitative answers represent sensible values and to go back over calculations when they do not.
- Learn standard descriptions of physical processes, such as the production of atomic line spectra, and be able apply them with sufficient detail to specific situations, identifying the parts of the general explanation required to answer the particular question.
- In questions with mixed quantities, be sure to convert all values to standard SI base units or derived units, e.g. convert years or hours to seconds, °C to K, nm, mm and km to m.
- Be sure to know the standard SI prefixes and be able to apply the correct power of ten.
- Physical quantities have a magnitude and a unit and both must be given in answers to numerical questions.
- When substituting in an equation with a power term, e.g.  $x^2$ , don't suddenly miss off the index when substituting or forget it in the calculation, such as failing to calculate a square root.
- When using graphs, read the scale values on either side of the point of interest to ensure you are using the scale correctly.
- Remember that phase difference is expressed as an angle and path difference is expressed in terms of distance or wavelengths.

#### **Grade Boundaries**

Grade boundaries for this, and all other papers, can be found on the website on this link:

http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL.