

# GCE

# **Physics B**

## H157/02: Physics in depth

AS Level

## Mark Scheme for June 2023

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2023

## Mark Scheme MARKING INSTRUCTIONS

June 2023

#### PREPARATION FOR MARKING RM ASSESSOR

- 1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: *RM Assessor 3 Online Training*; *OCR Essential Guide to Marking*.
- 2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are posted on the RM Cambridge Assessment Support Portal <u>http://www.rm.com/support/ca</u>
- 3. Log-in to RM Assessor 3 and mark the practice responses ("scripts") and the STM standardisation responses

YOU MUST MARK 6 PRACTICE AND 8 STANDARDISATION RESPONSES BEFORE YOU CAN BE APPROVED TO MARK LIVE SCRIPTS.

### MARKING

- 1. Mark strictly to the mark scheme.
- 2. Marks awarded must relate directly to the marking criteria.
- 3. The schedule of dates is very important. It is essential that you meet the RM Assessor 3 50% and 100% (traditional 40% Batch 1 and 100% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
- 4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone or the RM Assessor 3 messaging system, or by email.

#### 5. Crossed Out Responses

Where a candidate has crossed out a response and provided a clear alternative then the crossed out response is not marked. Where no alternative response has been provided, examiners may give candidates the benefit of the doubt and mark the crossed out response where legible.

### **Multiple Choice Question Responses**

When a multiple choice question has only a single, correct response and a candidate provides two responses (even if one of these responses is correct), then no mark should be awarded (as it is not possible to determine which was the first response selected by the candidate). When a question requires candidates to select more than one option/multiple options, then local marking arrangements need to ensure consistency of approach.

### **Contradictory Responses**

| H157/02                               | Mark Scheme                                                | June 2023                    |
|---------------------------------------|------------------------------------------------------------|------------------------------|
| When a candidate provides contradicto | pry responses, then no mark should be awarded, even if one | e of the answers is correct. |

### Short Answer Questions (requiring only a list by way of a response, usually worth only one mark per response)

Where candidates are required to provide a set number of short answer responses then only the set number of responses should be marked. The response space should be marked from left to right on each line and then line by line until the required number of responses have been considered. The remaining responses should not then be marked. Examiners will have to apply judgement as to whether a 'second response' on a line is a development of the 'first response', rather than a separate, discrete response. (The underlying assumption is that the candidate is attempting to hedge their bets and therefore getting undue benefit rather than engaging with the question and giving the most relevant/correct responses.)

#### Short Answer Questions (requiring a more developed response, worth two or more marks)

If the candidates are required to provide a description of, say, three items or factors and four items or factors are provided, then mark on a similar basis – that is downwards (as it is unlikely in this situation that a candidate will provide more than one response in each section of the response space.)

#### Longer Answer Questions (requiring a developed response)

Where candidates have provided two (or more) responses to a medium or high tariff question which only required a single (developed) response and not crossed out the first response, then only the first response should be marked. Examiners will need to apply professional judgement as to whether the second (or a subsequent) response is a 'new start' or simply a poorly expressed continuation of the first response.

- 6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.
- 7. Award No Response (NR) if:
  - there is nothing written in the answer space

Award Zero '0' if:

- anything is written in the answer space and is not worthy of credit (this includes text and symbols).
- 8. The RM Assessor 3 comments box is used by your team leader to explain the marking of the practice responses. Do not use the comments box for any other reason.

If you have any questions or comments for your team leader, use the phone, the RM Assessor 3 messaging system, or e-mail.

## June 2023

## 9. Annotations available in RM Assessor 3:

| Annotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Meaning                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| BOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benefit of doubt given                 |
| CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contradiction                          |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Incorrect response                     |
| ECF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Error carried forward                  |
| FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Follow through                         |
| NAQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not answered question                  |
| NBOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benefit of doubt not given             |
| POT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Power of 10 error                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Omission mark                          |
| RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rounding error                         |
| SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Error in number of significant figures |
| <ul> <li>Image: A start of the start of</li></ul> | Correct response                       |
| AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Arithmetic error                       |
| ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wrong physics or equation              |

10. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

| H157/02    | Mark Scheme                                                         | June 2023 |
|------------|---------------------------------------------------------------------|-----------|
| Annotation | Meaning                                                             |           |
| /          | alternative and acceptable answers for the same marking point       |           |
| (1)        | Separates marking points                                            |           |
| reject     | Answers which are not worthy of credit                              |           |
| not        | Answers which are not worthy of credit                              |           |
| IGNORE     | Statements which are irrelevant                                     |           |
| ALLOW      | Answers that can be accepted                                        |           |
| ()         | Words which are not essential to gain credit                        |           |
|            | Underlined words must be present in answer to score a mark          |           |
| ecf        | Error carried forward                                               |           |
| AW         | Alternative wording                                                 |           |
| ORA        | Or reverse argument                                                 |           |
| (1)m       | a method mark, awarded if a correct method is used                  |           |
| (1)e       | an evaluation mark, awarded for correct substitution and evaluation |           |

11. All question parts bearing mark totals > 1 should be annotated with ticks in the body of the text to show where marks have been awarded. Ticks must NOT be used in 6(a) or 8(d) — these should be annotated with X, L1, L2, L3 only for marks 0 to 6. Allow responses that round correctly to the responses given in the markscheme unless stated otherwise.

| Question |     | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks    | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |     | Section A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1        | (a) | $u_{\rm H} = 7.8 / 7.83 ({\rm m \ s^{-1}}) (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2        | If sin and cos reversed so $u_{\rm H} = 12$ (m s <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |     | $u_{\rm V} = 12/11.6 \ ({\rm m \ s^{-1}}) \ (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2        | AND $u_V = 7.8 \text{ (m s}^{-1}\text{)}$ award (1) total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | (b) | $v_{V^2} = 0 = u_{V^2} + 2as_V = (11.6 \text{ m s}^{-1})^2 + 2(-g) s_V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Other approaches possible. Ignore excessive s.f.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |     | $s_V = (11.6 \text{ m s}^{-1})^2 / (2 \times 9.81 \text{ m s}^{-2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |     | = 6.8 / 6.85 / 6.9 m(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Unrounded $U_V$ gives 6.86 m, $U_V = 12$ m s <sup>-1</sup> gives 7.34 m<br>Allow ecf from (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | (0) | height = $SV + 1.7$ m = 8.5 / 8.55/ 8.6 (m) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | (0) | $W - U_V = gt \Rightarrow t = (0 - 11.6 \text{ m s}^{-1})/(-9.81 \text{ m s}^{-2}) = 1.18 \text{ s}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2        | Unrounded $u_{\rm H}$ , $u_{\rm V}$ give 9.26 m<br>Using 7.34 gives 8.66 and scores 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |     | $S_{H} = u_{H}t = 7.05 \text{ In } S^{-1} X^{-1.10} S = 9.24 \text{ In } = 9.2 \text{ In } (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2        | (a) | $f = c/\lambda = 3.0 \times 10^8 \text{ m s}^{-1}/470 \times 10^{-9} \text{ m} = 6.38 \times 10^{14} \text{ Hz} (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | Correct substitution into $hc/\lambda$ scores 1 <sup>st</sup> mark. $hc/\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |     | Work done = $E = hf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |     | $= 6.63 \times 10^{-34} \text{ J s} \times 6.38 \times 10^{14} \text{ Hz} = 4.23 \times 10^{-19} \text{ J (1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | (0) | $V = W/Q = 4.23 \times 10^{16} \text{ J}/1.60 \times 10^{16} \text{ C} = 2.64 \text{ V} (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2        | ORA VIa 2.60 V × 1.60 × $10^{10}$ C = 4.16 × $10^{10}$ J (1) Which is<br>loss than 4.23 × $10^{19}$ J (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |     | emission to occur. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2        | $1033$ (1) $114.23 \times 10^{-3}$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | (c) | $30 \text{ mA} \Rightarrow 30 \times 10^{-3} \text{ C s}^{-1/1.60} \times 10^{-19} \text{ C electron}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | If correct alternative method used, correct substitution scores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |     | $= 1.875 \times 10^{17}$ electrons s <sup>-1</sup> (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2        | 1 mark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |     | Number of photons/second = $(93/100) \times 1.875 \times 10^{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |     | $= 1.74 \times 10^{17}  \mathrm{s}^{-1}  (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>^</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | T T | lotai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3        | (a) | $p_{\text{total}} = p_{\text{A before}} = 0.160 \text{ kg} \times 1.5 \text{ m s}^{-1} = 0.24 \text{ N s} (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | Can be done in terms of acceleration & Newton III:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |     | $0.24 \text{ NS} = p_{\text{A after}} + p_{\text{B after}} = 0.160 \text{ Kg} \times 0.4 \text{ mS}^{-1} + p_{\text{B after}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •        | $a_{\rm A} = (0.4 \text{ m s}^{-1} - 1.5 \text{ m s}^{-1})/0.2 \text{ s} = -5.5 \text{ m s}^{-2} (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |     | $p_{\text{B after}} = 0.24 \text{ N S} - 0.004 \text{ N S} = 0.176 \text{ N S} (1)$<br>$p_{\text{B after}} = 0.176 \text{ N S} (0.120 \text{ kg} = 1.5 (1.47) \text{ m S}^{-1} (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3        | $r_{\rm A} = 0.100 \text{ kg} \times -3.5 \text{ m} \text{ s}^{-2} = -0.88 \text{ N} = -r_{\rm B}(1)$<br>$a_{\rm B} = 0.88 \text{ N}/0.120 \text{ kg} = 7.33 \text{ m} \text{ s}^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |     | $- \frac{1}{2} = \frac{1}{2} \left( \frac{1}{2} + \frac$ |          | $h_{0} = h_{0} = h_{0$ |
|          | (b) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | If method above used can quote $F$ from (a) for the mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |     | $\Gamma = \Delta \rho / \Delta I = \rho_{\text{B after}} / 0.2 \text{ s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |     | 0.170  N/0.25 = 0.00  N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Question | า   |      | Answer                                                                                                                                                                                                                                                                                               | Marks | Guidance                                                                                                                                                                 |
|----------|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4        | (a) | (i)  | Any 2 from:<br>zero order = no path difference<br>(therefore) all wavelengths meet in phase<br>(so) what you see is a combination of all the wavelengths<br>present in the light<br>path difference for maxima for higher orders wavelength<br>dependent<br>At zero order constructive superposition | 2     | Allow no diffraction at zero order (1)<br>(So) colour seen is the sum of all the wavelengths emitted by<br>the tube (1)<br>Any reference to refraction scores zero.      |
|          | (a) | (ii) | Blue light has a shorter wavelength than red light (so from $n\lambda = d \sin \theta$ , smaller $\lambda \Rightarrow$ (smaller sin $\theta \Rightarrow$ ) smaller $\theta$ ) (1)                                                                                                                    | 1     |                                                                                                                                                                          |
|          | (b) |      | Make a valid measurement (eg Measure $\theta$ between a blue<br>line and the 0 order) (1)<br>detail, e.g. mark apparent position and use trig to deduce $\theta$<br>/use protractor to determine $\theta$ (1)<br>use $n\lambda = d \sin(\theta)$ to find $\lambda$ (1)                               | 3     | Measure or find $\theta$ (or a length to allow $\theta$ to be calculated )<br>Use of ruler is sufficient practical detail for 2 <sup>nd</sup> mark<br>Seen or described. |
|          |     |      | Total                                                                                                                                                                                                                                                                                                | 6     |                                                                                                                                                                          |
| 5        | (a) |      | $A = \pi r^{2} = (0.508/2 \times 10^{-3} \text{ m x } \pi)^{2} = 2.03 \times 10^{-7} \text{ m}^{2}$<br>$OR  R = \rho L/A \implies L = RA/\rho (1)$<br>$= 15 \ \Omega \times 2.03 \times 10^{-7} \text{ m}^{2}/1.10 \times 10^{-6} \ \Omega \text{ m}$<br>= 2.76  m (1)                               | 2     | Allow 2 (1sf)                                                                                                                                                            |
|          | (b) |      | Max. proportional uncertainty = $0.1/15$ (= $6.67 \times 10^{-3}$ ) (1)<br>$L \alpha R$<br>$\Delta L = 6.67 \times 10^{-3} \times 2.76$ m = 0.018 m (1)                                                                                                                                              | 2     | Or 0.02 m                                                                                                                                                                |
|          |     |      | Total                                                                                                                                                                                                                                                                                                | 4     |                                                                                                                                                                          |
|          |     |      | Section A total                                                                                                                                                                                                                                                                                      | 26    |                                                                                                                                                                          |

Mark Scheme

June 2023

| Question Answer M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6       (a)       (Level 3) (5 - 6 marks)<br>Identifies places where the materials are under tension<br>and where under compression, possibly annotated on<br>the diagram. Considers the cost of materials used and<br>the need for safety and stability.<br>There is a well-developed line of reasoning which is<br>clear and<br>logically structured. The information presented is<br>relevant and substantiated.         (Level 2) (3 - 4 marks)<br>Accurately discusses behaviour of steel and concrete<br>under (tensile) stress but may not clearly identify which<br>parts of the bridge are under tension and which under<br>compression. No discussion of cost of materials or of<br>stability.         There is a line of reasoning presented with some<br>structure. The information presented is in the most part<br>relevant and supported by some evidence.         (Level 1) (1 - 2 marks)<br>Makes generalised comments about steel and concrete<br>under stress but does not relate them to the bridge<br>structure<br>There is an attempt at a logical structure with a line of<br>reasoning. The information is in the most part relevant         (0 marks)<br>Insufficient or irrelevant science. Answer not worthy of<br>credit. | [6]   | <ul> <li>Indicative scientific points may include:</li> <li>Tensile and compressive stress <ul> <li>Tough, elastic materials have similar behaviour under tension and compression</li> <li>Brittle materials are strong under compression and weak under tension</li> <li> due to crack propagation</li> <li>Brittle failure could cause the structure to collapse.</li> <li>Bridge hangers (and suspension cables, and deck) are under tension</li> <li>Bridge towers are under compression</li> </ul> </li> <li>Relevant properties of steel <ul> <li>Strong,</li> <li>Tough.</li> <li>Relatively expensive</li> <li>Needs to be cast to fit</li> </ul> </li> <li>Relevant properties of concrete <ul> <li>Strong under compression, weak under tension</li> <li>Brittle under tension</li> <li>Relatively compression, weak under tension</li> <li>Brittle under tension</li> <li>Relatively compression, weak under tension</li> <li>Relatively cheap</li> </ul> </li> </ul> |

| Question | Answer | Marks | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Question | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | (b)    | (i)   | Weight per hanger $F = mg/500$<br>= 1.4 × 10 <sup>8</sup> kg × 9.81 N kg <sup>-1</sup> /500 = 2.75 × 10 <sup>6</sup> N<br>(1)<br>(Cross-section area of a hanger, $A = \pi (0.32 \text{ m/2})^2$<br>= 0.0804 m <sup>2</sup> )<br>$\sigma = F/A = 2.75 \times 10^6 \text{ N/0.0804 m}^2 = 3.42 \times 10^7 \text{ Pa}$<br>(1)<br>$\sigma/\sigma_{\text{yield}} = 3.42 \times 10^7 \text{ Pa}/2.7 \times 10^9 \text{ Pa}$<br>= 0.0127 = 1.27% (which <2%) (1)                    | 3        | Can be done in terms of total $\sigma$ and total $A$<br>In this case first marking point is for total weight (1.375 x 10 <sup>6</sup> N).<br>(2 <sup>nd</sup> marking point for stress calculated correctly)<br>3 <sup>rd</sup> mark can also be scored by comparison of the correct stress value with correct calculation of 2% of yield stress.                                                                                                                                                                                    |
|          | (b)    | (ii)  | Additional weight = 2700 m × 6000 kg m <sup>-1</sup> × $g$ = 1.59 ×<br>10 <sup>8</sup> N (1)<br>Total weight per hanger = 2.75 × 10 <sup>6</sup> + 1.59 × 10 <sup>8</sup> /500 N<br>= 3.07 × 10 <sup>6</sup> N<br>$\sigma_{max}$ = 3.07 × 10 <sup>6</sup> N/0.0804 m <sup>2</sup> = 3.82 × 10 <sup>7</sup> Pa (1)<br>ratio $\sigma_{max}/\sigma$ = 3.82 × 10 <sup>7</sup> Pa/3.42 × 10 <sup>7</sup> Pa = 1.117<br>2 s.f. is appropriate, as in raw data, so ratio = 1.1<br>(1) | 3        | Alternative method 1 using total weight:<br>1 <sup>st</sup> mark is for additional weight calculated correctly.<br>2 <sup>nd</sup> mark is for (original weight + additional weight)<br>calculated correctly.<br>Correct calculation of ratio to 2 s.f. scores 3 marks.<br>Alternative method 2 using mass:<br>1 <sup>st</sup> mark is for additional mass calculated correctly.<br>2 <sup>nd</sup> mark is for (original mass + additional mass)<br>calculated correctly.<br>Correct calculation of ratio to 2 s.f. scores 3 marks. |
|          | (b)    | (iii) | Any two points from:<br>Some lorries may be very heavily loaded (1)<br>Traffic may stop on bridge and tail back, getting closer<br>and so exceeding the max number per metre allowed at<br>that point (1)<br>Wind loading may introduce additional force on<br>hangers(1)                                                                                                                                                                                                      | 2        | Allow any reasonable factor<br>Allow degradation with time but not damage.<br>Not "wear"                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |        |       | lotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Que | stion |      | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks | Guidance                                                                                                                                                                                                                                             |
|-----|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | (a)   | (i)  | 11 $T = 23.7 \text{ ms} \Rightarrow T = 2.15 \times 10^{-3} \text{ s} (1)$<br>$f_{\text{mean}} = 1/T = 465 \text{ Hz} (1)$<br>$\Delta T = \pm 0.1 \text{ ms}$<br>$T_{\text{max}} = 23.8 \text{ ms}/11 = 2.163 \times 10^{-3} \text{ s} (1)$<br>$f_{\text{min}} = 1/2.163 \times 10^{-3} \text{ s} = 462 \text{ Hz}$<br>$\Delta f = f_{\text{mean}} - f_{\text{min}} = (465-462) \text{ Hz} = 3 \text{ Hz} f \pm \Delta f = 465 \pm 3 \text{ Hz} (1)$ | 4     | allow 450 – 480.<br>Allow 0.05 ms to 0.2 ms. Ecf own <i>T</i> throughout.<br>Needs <i>f</i> rounded to precision of $\Delta f$<br>$\Delta f$ allow 2, 3 or 4 Hz.<br>Maximum 2 marks unless > 9 <i>T</i><br>First mark for correct reading of period. |
|     | (a)   | (ii) | Single frequency is a sine wave whereas this has repeating irregularities/harmonics present (1)<br>The irregularities fluctuate at a greater frequency than the frequency of repeat of the pattern (1)                                                                                                                                                                                                                                               | 2     | Allow "multiple peaks at different heights" but not just "multiple peaks"                                                                                                                                                                            |
|     | (b)   | (i)  | 3-bit encoding $\Rightarrow 2^3 = 8$ different levels (i.e. one each mV) (1)<br>At each sampling time, value recorded is the level nearest<br><u>below</u> the true value (1)<br>3 in binary is 0 1 1 (1)                                                                                                                                                                                                                                            | 3     | Allow any sensible clear comparison of Fig. 7.1 & sinusoid                                                                                                                                                                                           |
|     | (b)   | (ii) | The curve has been smoothed AW /there are only 8 distinct<br>levels (1)<br>will have different harmonics/constituent frequencies from the<br>original signal / high frequency sounds may be missed (1)                                                                                                                                                                                                                                               | 2     | Not "sample every 0.5s"<br>Not noise<br>Allow "loss of detail". Allow "less defined".                                                                                                                                                                |
|     | (c)   |      | number of samples = 99 s/0.25×10 <sup>-3</sup> s = 396 000 (1)<br>(size = 396 000 samples × 3 bits sample <sup>-1</sup> = 1 188 000 bits)<br>number of bytes = 1 188 000 bits/8 = 148 500 (1)                                                                                                                                                                                                                                                        | 2     | Ignore POT error for 1 <sup>st</sup> mark (eg 99/0.25)                                                                                                                                                                                               |
|     | (d)   |      | Time between samples = $1/44100 \text{ Hz} = 2.27 \times 10^{-5} \text{ s}$<br>Number of samples in 1 minute 39 s = 99 s/2.27 × 10 <sup>-5</sup> s<br>= $4.37 \times 10^{6}$ (1)<br>No of bits in stereo recording = $2 \times 8 \times 4.37 \times 10^{6}$<br>= $6.99 \times 10^{7}$ bits<br>download time = $6.99 \times 10^{7}$ bits/65 × 10 <sup>6</sup> bits s <sup>-1</sup> = 1.07 s (1)                                                       | 2     | Award 1 mark for t=0.54                                                                                                                                                                                                                              |
|     |       |      | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15    |                                                                                                                                                                                                                                                      |
|     |       |      | Section B total                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29    |                                                                                                                                                                                                                                                      |

| Que | Question |      | Answer                                                                                                                                                                                                                                                                                                                                                | Marks | Guidance                                                                                                                                                                                                                             |
|-----|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |          |      | Section                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                                                                                                                      |
| 8   | (a)      | (i)  | R fixed                                                                                                                                                                                                                                                                                                                                               |       | Allow omission of "4.5 V" label and "Rfixed" label<br>Allow A and C reversed.<br>Must use a recognisable circuit symbol for potentiometer<br>(not a sketch).                                                                         |
|     |          |      | 4.5 V<br>Diagram as shown = 2 marks<br>R and potentiometer in series with battery = 1 mark                                                                                                                                                                                                                                                            | 2     |                                                                                                                                                                                                                                      |
|     | (a)      | (ii) | Any two points from:<br>The voltmeter (is in parallel with potentiometer section AB and)<br>would draw a significant current from the battery (1)<br>the actual resistance between A and B is a parallel<br>combination (1)<br>The response of the potentiometer is not linear with position,<br>(which would make use of the sensor complicated) (1) | 2     | Not "path of least resistance".                                                                                                                                                                                                      |
|     | (b)      | (i)  | The trend is better shown with more values at low $d/d - V_{AB}$<br>relationship is non-linear (1)<br>$V_{AB}$ changes more rapidly for small <i>d</i> than for large <i>d</i> <b>OR</b><br>Although $\Delta d$ is non-linear between adjacent readings, $\Delta V_{AB}$ is<br>relatively constant between adjacent readings. (1)                     | 2     | Allow this would provide excess data.                                                                                                                                                                                                |
|     | (b)      | (ii) | (Fractional uncertainties in <i>d</i> are typically 0.5 mm/15 cm $\approx$ 1/300 but) The voltmeter has a higher resolution, (even rounded to the nearest 10 mV), than the ruler.                                                                                                                                                                     | 1     | e.g. ruler uncertainty = $0.5 \text{ mm}/150 \text{ mm} = 1/300 \text{ whereas}$<br>voltmeter uncertainty, when rounded, is $10 \text{ mV}/3.5 \text{ V} = 1/350$ .<br>Going to the nearest 1 mV would make the reading too precise. |
|     | (c)      |      | Points plotted correctly with uncertainties $\Delta d$ the same as the other points (1/4 mm) (1)<br>Smooth curve drawn through all uncertainty bars (1)                                                                                                                                                                                               | 2     | Point (0,0) may have no uncertainty bar; allow omission of (0.0)                                                                                                                                                                     |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d)      | <ul> <li>(Level 3) (5 – 6 marks)<br/>Recognises that the difference in the circuits lies in the value<br/>of the fixed resistor used and that the repeat used a higher<br/>value of <i>R</i><sub>fixed</sub>. May consider sensitivity of the sensor circuit in<br/>each case and recognise the variation in the repeat data is<br/>more uniform. May explain that a uniform variation of <i>V</i><sub>AB</sub> with<br/><i>d</i> will result in more consistency in identifying the position <i>d</i>.<br/><i>There is a well-developed line of reasoning which is clear and</i><br/><i>logically structured</i>. The information presented is relevant and<br/>substantiated.</li> <li>(Level 2) (3 – 4 marks)</li> <li>Describes differences between the sets of results. Provides<br/>justification and some additional detail.</li> <li>Recognizes the two circuits used were different but did not<br/>ascribe this to the fixed resistor. There is a line of reasoning<br/>presented with some structure. The information presented is in<br/>the most part relevant and supported by some evidence.</li> <li>(Level 1) (1 – 2 marks)</li> <li>Describes differences between the sets of results.<br/>There is an attempt at a logical structure with a line of<br/>reasoning. The information is in the most part relevant</li> <li>(0 marks)</li> <li>Insufficient or irrelevant science. Answer not worthy of credit.</li> </ul> | [6]   | <ul> <li>Indicative scientific points may include:</li> <li>Comparing the two circuits <ul> <li>Greater range of p.d.s in the repeat</li> <li>In first set, V<sub>AB</sub> changes rapidly near d = 0 and then more slowly near d = 50 mm</li> <li>V<sub>AB</sub> changes more uniformly in the repeat set</li> </ul> </li> <li>Analysis of the data <ul> <li>Sensitivity = dV/dd = gradient of the graph</li> <li>Hard to resolve small movements at large d in first set</li> <li>When V<sub>AB</sub> is 2.25 V (½ E) then R<sub>fixed</sub> = resistance of segment AB of the potentiometer</li> <li>For the first set of data, R<sub>fixed</sub> = about 9 mm of the potentiometer making R<sub>fixed</sub> = (9/50) × 10 kΩ = 1800Ω</li> <li>For the repeat set of data, R<sub>fixed</sub> = a bit under 30 mm of the potentiometer making R<sub>fixed</sub> = (29/50) × 10 kΩ = 5800Ω</li> </ul> </li> <li>Evaluation <ul> <li>A linear response of V<sub>AB</sub> with d in the repeat is better than the very non-linear of the original</li> <li>The higher value of R<sub>fixed</sub> produced better results</li> </ul> </li> <li>Use the L1, L2, L3 annotations in Assessor; do not use ticks.</li> </ul> |
|          | Section C Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on

01223 553998

Alternatively, you can email us on

support@ocr.org.uk

For more information visit





Twitter/ocrexams

/ocrexams

/company/ocr

/ocrexams



OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2023 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466. OCR is an exempt charity.

OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please <u>contact us</u>.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.